Spaces:
Running
Running
import streamlit as st | |
import streamlit_ext as ste | |
from inference import Inference | |
import random | |
from rdkit.Chem import Draw | |
from rdkit import Chem | |
from rdkit.Chem.Draw import IPythonConsole | |
import io | |
from PIL import Image | |
class DrugGENConfig: | |
submodel='DrugGEN' | |
act='relu' | |
max_atom=45 | |
dim=32 | |
depth=1 | |
heads=8 | |
mlp_ratio=3 | |
dropout=0. | |
features=False | |
inference_sample_num=1000 | |
inf_batch_size=1 | |
protein_data_dir='data/akt' | |
drug_index='data/drug_smiles.index' | |
drug_data_dir='data/akt' | |
mol_data_dir='data' | |
log_dir='experiments/logs' | |
model_save_dir='experiments/models' | |
sample_dir='experiments/samples' | |
result_dir="experiments/tboard_output" | |
inf_dataset_file="chembl45_test.pt" | |
inf_drug_dataset_file='akt_test.pt' | |
inf_raw_file='data/chembl_test.smi' | |
inf_drug_raw_file="data/akt_test.smi" | |
inference_model="experiments/models/DrugGEN" | |
log_sample_step=1000 | |
set_seed=False | |
seed=1 | |
class NoTargetConfig(DrugGENConfig): | |
submodel="NoTarget" | |
dim=128 | |
inference_model="experiments/models/NoTarget" | |
model_configs = { | |
"DrugGEN": DrugGENConfig(), | |
"NoTarget": NoTargetConfig() | |
} | |
with st.sidebar: | |
st.title("DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks") | |
st.write("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)") | |
with st.expander("Expand to display information about models"): | |
st.write(""" | |
### Model Variations | |
- **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design. | |
- **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target. | |
- **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation. | |
""") | |
with st.form("model_selection_from"): | |
model_name = st.radio( | |
'Select a model to make inference (DrugGEN-Prot and DrugGEN-CrossLoss models design molecules to target the AKT1 protein)', | |
('DrugGEN-Prot', 'DrugGEN-CrossLoss', 'DrugGEN-NoTarget') | |
) | |
model_name = model_name.replace("DrugGEN-", "") | |
molecule_num_input = st.number_input('Number of molecules to generate', min_value=1, max_value=100_000, value=1000, step=1) | |
seed_input = st.number_input("RNG seed value (can be used for reproducibility):", min_value=0, value=42, step=1) | |
submitted = st.form_submit_button("Start Computing") | |
if submitted: | |
# if submitted or ("submitted" in st.session_state): | |
# st.session_state["submitted"] = True | |
config = model_configs[model_name] | |
config.inference_sample_num = molecule_num_input | |
config.seed = seed_input | |
with st.spinner(f'Creating the trainer class instance for {model_name}...'): | |
trainer = Trainer(config) | |
with st.spinner(f'Running inference function of {model_name} (this may take a while) ...'): | |
results = trainer.inference() | |
st.success(f"Inference of {model_name} took {results['runtime']:.2f} seconds.") | |
with st.expander("Expand to see the generation performance scores"): | |
st.write("### Generation performance scores (novelty is calculated in comparison to the training dataset)") | |
st.success(f"Validity: {results['fraction_valid']}") | |
st.success(f"Uniqueness: {results['uniqueness']}") | |
st.success(f"Novelty: {results['novelty']}") | |
with open(f'experiments/inference/{model_name}/inference_drugs.txt') as f: | |
inference_drugs = f.read() | |
# st.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'DrugGEN-{model_name}_denovo_mols.smi', mime="text/plain") | |
ste.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'DrugGEN-{model_name}_denovo_mols.smi', mime="text/plain") | |
st.write("Structures of randomly selected 12 de novo molecules from the inference set:") | |
# from rdkit.Chem import Draw | |
# img = Draw.MolsToGridImage(mol_list, molsPerRow=5, subImgSize=(250, 250), maxMols=num_mols, | |
# legends=None, useSVG=True) | |
generated_molecule_list = inference_drugs.split("\n") | |
selected_molecules = random.choices(generated_molecule_list,k=12) | |
selected_molecules = [Chem.MolFromSmiles(mol) for mol in selected_molecules] | |
# IPythonConsole.UninstallIPythonRenderer() | |
drawOptions = Draw.rdMolDraw2D.MolDrawOptions() | |
drawOptions.prepareMolsBeforeDrawing = False | |
drawOptions.bondLineWidth = 1. | |
molecule_image = Draw.MolsToGridImage( | |
selected_molecules, | |
molsPerRow=3, | |
subImgSize=(250, 250), | |
maxMols=len(selected_molecules), | |
# legends=None, | |
returnPNG=False, | |
# drawOptions=drawOptions, | |
highlightAtomLists=None, | |
highlightBondLists=None, | |
) | |
print(type(molecule_image)) | |
# print(type(molecule_image._data_and_metadata())) | |
molecule_image.save("result_grid.png") | |
# png_data = io.BytesIO() | |
# molecule_image.save(png_data, format='PNG') | |
# png_data.seek(0) | |
# Step 2: Read the PNG image data as a PIL image | |
# pil_image = Image.open(png_data) | |
# st.image(pil_image) | |
st.image(molecule_image) | |
else: | |
st.warning("Please select a model to make inference") | |