Erva Ulusoy commited on
Commit
29f5209
·
1 Parent(s): 768957d

domain_locations field name changed: sequence_region

Browse files
Files changed (2) hide show
  1. pages/User_Guide.py +1 -1
  2. run_domain2go_app.py +1 -1
pages/User_Guide.py CHANGED
@@ -58,7 +58,7 @@ st.markdown(
58
  | GO_ID | Gene Ontology term ID. |
59
  | GO_term | Gene Ontology term name. |
60
  | GO_category | Gene Ontology term aspect (molecular_function, biological_process or cellular_component). |
61
- | domain_locations | List of locations of the domain in the protein sequence. |
62
  | probability | Probability of the domain being associated with the GO term. You can find more information about calculation of this score in our [pre-print article](https://www.biorxiv.org/content/10.1101/2022.11.03.514980v1) Chapter 2.2. |
63
  | domain_accession | InterPro domain accession. |
64
  | domain_name | InterPro domain name. |
 
58
  | GO_ID | Gene Ontology term ID. |
59
  | GO_term | Gene Ontology term name. |
60
  | GO_category | Gene Ontology term aspect (molecular_function, biological_process or cellular_component). |
61
+ | sequence_region | List of locations of the domain in the protein sequence. |
62
  | probability | Probability of the domain being associated with the GO term. You can find more information about calculation of this score in our [pre-print article](https://www.biorxiv.org/content/10.1101/2022.11.03.514980v1) Chapter 2.2. |
63
  | domain_accession | InterPro domain accession. |
64
  | domain_name | InterPro domain name. |
run_domain2go_app.py CHANGED
@@ -110,7 +110,7 @@ def generate_function_predictions(domains_df, mapping_path):
110
  else:
111
  merged_df['protein_name'] = domains_df['protein_name'].iloc[0]
112
  merged_df = merged_df[['protein_name', 'GO', 'GO_name', 'GO_aspect', 'domain_locations', 's', 'domain_accession', 'domain_name',]]
113
- merged_df.columns = ['protein_name', 'GO_ID', 'GO_term', 'GO_category', 'domain_locations', 'probability', 'domain_accession', 'domain_name',]
114
 
115
  # save protein function predictions
116
  protein_name = domains_df['protein_name'].iloc[0]
 
110
  else:
111
  merged_df['protein_name'] = domains_df['protein_name'].iloc[0]
112
  merged_df = merged_df[['protein_name', 'GO', 'GO_name', 'GO_aspect', 'domain_locations', 's', 'domain_accession', 'domain_name',]]
113
+ merged_df.columns = ['protein_name', 'GO_ID', 'GO_term', 'GO_category', 'sequence_region', 'probability', 'domain_accession', 'domain_name',]
114
 
115
  # save protein function predictions
116
  protein_name = domains_df['protein_name'].iloc[0]