Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from os import path | |
import sys | |
import streamlit.components.v1 as components | |
sys.path.append('code/') | |
#sys.path.append('ASCARIS/code/') | |
import pdb_featureVector | |
import alphafold_featureVector | |
import argparse | |
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode | |
import base64 | |
showWarningOnDirectExecution = False | |
def convert_df(df): | |
return df.to_csv(index=False, sep='\t').encode('utf-8') | |
# Check if 'key' already exists in session_state | |
# If not, then initialize it | |
if 'visibility' not in st.session_state: | |
st.session_state['visibility'] = 'visible' | |
st.session_state.disabled = False | |
showWarningOnDirectExecution = False | |
original_title = '<p style="font-family:Trebuchet MS; color:#000000; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>' | |
st.markdown(original_title, unsafe_allow_html=True) | |
original_title = '<p style="font-family:Trebuchet MS; color:#000000; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>' | |
st.markdown(original_title, unsafe_allow_html=True) | |
st.write('') | |
st.write('') | |
st.write('') | |
st.write('') | |
with st.form('mform', clear_on_submit=False): | |
source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2]) | |
#source = 1 | |
impute = st.selectbox('Missing value imputation (mostly for the cases where the corresponding annotation does not exist in the protein)',[True, False]) | |
input_data = st.text_input('Enter SAV data points (format: "UniProt/Swiss-Prot human protein accession" β "wild type a.a." β "position on the sequence" β "mutated a.a."). Example: Q9BTP7-S-126-F or P04217-A-493-S, Q00889-G-2-L') | |
parser = argparse.ArgumentParser(description='ASCARIS') | |
input_set = input_data | |
mode = source | |
impute = impute | |
submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False) | |
print('*****************************************') | |
print('Feature vector generation is in progress. \nPlease check log file for updates..') | |
print('*****************************************') | |
mode = int(mode) | |
selected_df = pd.DataFrame() | |
st.write('The online tool may be slow, especially while processing multiple SAVs and with multiple PDB matches. To address this, please consider using the programmatic version at https://github.com/HUBioDataLab/ASCARIS/') | |
if submitted: | |
with st.spinner('In progress...This may take a while...'): | |
# try: | |
if mode == 1: | |
selected_df = pdb_featureVector.pdb(input_set, mode, impute) | |
elif mode == 2: | |
selected_df = alphafold_featureVector.alphafold(input_set, mode, impute) | |
else: | |
selected_df = pd.DataFrame() | |
if selected_df is None: | |
st.success('Feature vector failed.') | |
else: | |
if len(selected_df) != 0 : | |
st.write(selected_df) | |
st.success('Feature vector successfully created.') | |
csv = convert_df(selected_df) | |
st.download_button("Press to Download the Feature Vector", csv,f"ASCARIS_SAV_rep_{input_set}.csv","text/csv",key='download-csv') | |
else: | |
st.success('Feature vector failed.') | |