ASCARIS / code /swissModelAdd.py
fatmacankara's picture
Update code/swissModelAdd.py
039570d
raw
history blame
12.8 kB
import numpy as np
import pandas as pd
from pathlib import Path
import requests
from add_annotations import *
from utils import *
from add_annotations import *
from add_sasa import *
import streamlit as st
import json
UNIPROT_ANNOTATION_COLS = ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding',
'activeSite',
'nucleotideBinding', 'lipidation', 'site', 'transmembrane',
'crosslink', 'mutagenesis', 'strand',
'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain',
'caBinding', 'bindingSite', 'region',
'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif',
'coiledCoil', 'peptide',
'transitPeptide', 'glycosylation', 'propeptide', 'disulfideBinary',
'intMetBinary', 'intramembraneBinary',
'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary',
'nucleotideBindingBinary', 'lipidationBinary', 'siteBinary',
'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary',
'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary',
'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary',
'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary',
'modifiedResidueBinary', 'zincFingerBinary', 'motifBinary',
'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary',
'glycosylationBinary', 'propeptideBinary']
SIMPLE_COLS = ['uniprotID', 'wt', 'pos', 'mut', 'datapoint', 'composition', 'polarity',
'volume', 'granthamScore', 'domain', 'domStart', 'domEnd', 'distance',
'intMet', 'naturalVariant', 'activeSite', 'crosslink', 'mutagenesis',
'strand', 'helix', 'turn', 'region', 'modifiedResidue', 'motif',
'metalBinding', 'lipidation', 'glycosylation', 'topologicalDomain',
'nucleotideBinding', 'bindingSite', 'transmembrane', 'transitPeptide',
'repeat', 'site', 'peptide', 'signalPeptide', 'disulfide', 'coiledCoil',
'intramembrane', 'zincFinger', 'caBinding', 'propeptide', 'dnaBinding',
'disulfideBinary', 'intMetBinary', 'intramembraneBinary',
'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary',
'nucleotideBindingBinary', 'lipidationBinary', 'siteBinary',
'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary',
'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary',
'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary',
'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary',
'modifiedResidueBinary', 'zincFingerBinary', 'motifBinary',
'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary',
'glycosylationBinary', 'propeptideBinary']
def addSwissModels(to_swiss, path_to_input_files, path_to_output_files):
'''
:param to_swiss:
:param path_to_input_files:
:param path_to_output_files:
:return: swissmodel dataframe with mapped SWISSMODEL information, dataframe that will be sent to modbase.
'''
print('\n>>> Proceeding to SwissModel search...')
print('------------------------------------\n')
if len(to_swiss) > 0:
print('\n>>> Generating SwissModel file...\n')
to_swiss.reset_index(drop=True, inplace=True)
to_swiss.fillna(np.NaN)
swiss_model = pd.read_csv(Path(path_to_input_files / 'swissmodel_structures.txt'),
sep='\t', dtype=str, header=None, skiprows=1,
names=['UniProtKB_ac', 'iso_id', 'uniprot_seq_length', 'uniprot_seq_md5',
'coordinate_id', 'provider', 'from', 'to', 'template', 'qmean_norm', 'seqid',
'url'])
swiss_model = swiss_model[swiss_model.UniProtKB_ac.isin(to_swiss.uniprotID.to_list())]
try:
swiss_model.iso_id = swiss_model.iso_id.astype('str')
except:
AttributeError
swiss_model['iso_id'] = np.NaN
for ind in swiss_model.index:
swiss_model.at[ind, 'UniProtKB_ac'] = swiss_model.at[ind, 'UniProtKB_ac'].split('-')[0]
swiss_model = swiss_model[swiss_model.provider == 'SWISSMODEL']
print('\n>>> Index File Processed...\n')
swiss_model = swiss_model[['UniProtKB_ac', 'from', 'to', 'template', 'qmean_norm', 'seqid', 'url']]
# Sort models on qmean score and identity. Some proteins have more than one models, we will pick one.
swiss_model = swiss_model.sort_values(by=['UniProtKB_ac', 'qmean_norm', 'seqid'], ascending=False)
swiss_model.reset_index(inplace=True, drop=True)
with_swiss_models = to_swiss[to_swiss.uniprotID.isin(swiss_model.UniProtKB_ac.to_list())]
no_swiss_models = to_swiss[~to_swiss.uniprotID.isin(swiss_model.UniProtKB_ac.to_list())]
if len(no_swiss_models) == 0:
no_swiss_models = pd.DataFrame(columns=to_swiss.columns)
else:
no_swiss_models.reset_index(drop=True, inplace= True)
swiss_models_with_data = pd.merge(with_swiss_models, swiss_model, left_on=['uniprotID'],
right_on=['UniProtKB_ac'], how='left')
swiss_models_with_data = swiss_models_with_data.sort_values(by=['uniprotID', 'wt','pos', 'qmean_norm'],
ascending=False)
swiss_models_with_data['pos'] = swiss_models_with_data['pos'] .apply(lambda x: int(x))
swiss_models_with_data['from'] = swiss_models_with_data['from'].apply(lambda x: int(x))
swiss_models_with_data['to'] = swiss_models_with_data['to'] .apply(lambda x: int(x))
notEncompassed = swiss_models_with_data[((swiss_models_with_data['pos'] > swiss_models_with_data['to']) | (swiss_models_with_data['pos'] < swiss_models_with_data['from']))]
swiss_models_with_data = swiss_models_with_data[(swiss_models_with_data['pos'] < swiss_models_with_data['to']) & (swiss_models_with_data['pos'] > swiss_models_with_data['from'])]
notEncompassed = notEncompassed[~notEncompassed.uniprotID.isin(swiss_models_with_data.uniprotID.to_list())]
swiss_models_with_data = swiss_models_with_data.drop(['UniProtKB_ac', 'seqid'], axis=1)
swiss_models_with_data = swiss_models_with_data[swiss_models_with_data.url != np.NaN]
url_nan = swiss_models_with_data[swiss_models_with_data.url == np.NaN]
url_nan = url_nan.drop(['from', 'qmean_norm', 'template', 'to', 'url'], axis=1)
no_swiss_models_updated = pd.concat([no_swiss_models, url_nan, notEncompassed])
if len(swiss_models_with_data)>0:
for i in swiss_models_with_data.index:
try:
swiss_models_with_data.at[i, 'chain'] = swiss_models_with_data.at[i, 'template'].split('.')[2]
swiss_models_with_data.at[i, 'template'] = swiss_models_with_data.at[i, 'template'].split('.')[0]
except IndexError:
swiss_models_with_data.at[i, 'chain'] = np.NaN
swiss_models_with_data.at[i, 'template'] = np.NaN
swiss_models_with_data.chain = swiss_models_with_data.chain.astype('str')
swiss_models_with_data['qmean_norm'] = swiss_models_with_data.qmean_norm.apply(lambda x: round(float(x), 2))
no_swiss_models_updated.reset_index(drop = True, inplace=True)
swiss_models_with_data.reset_index(drop=True, inplace=True)
existing_free_sasa = list(Path(path_to_output_files / 'freesasa_files').glob("*"))
existing_free_sasa = [str(i) for i in existing_free_sasa]
existing_free_sasa = [i.split('/')[-1].split('.')[0] for i in existing_free_sasa]
print('Beginning SwissModel files download...')
existing_swiss = list(Path(path_to_output_files / 'swissmodel_structures').glob("*"))
existing_swiss = [str(i) for i in existing_swiss]
existing_swiss = ['.'.join(i.split('/')[-1].split('.')[:-1]) for i in existing_swiss]
for i in swiss_models_with_data.index:
protein = swiss_models_with_data.at[i, 'uniprotID']
varPos = swiss_models_with_data.at[i, 'pos']
wt = swiss_models_with_data.at[i, 'wt']
template = swiss_models_with_data.at[i, 'template'].split('.')[0]
qmean_norm = str(round(float(swiss_models_with_data.at[i, 'qmean_norm']), 2))
swiss_models_with_data.at[i, 'coordVAR'] = np.NaN
swiss_models_with_data.at[i, 'coordinates'] = np.NaN
swiss_models_with_data.at[i, 'AAonPDB'] = np.NaN
varPos = swiss_models_with_data.at[i, 'pos']
AAonPDB = np.NaN
coordDict = {}
if protein + '_' + template + '_' + qmean_norm not in existing_swiss:
url = swiss_models_with_data.at[i, 'url'].strip('\"').strip('}').replace('\\', '').strip('\"')
req = requests.get(url)
name = Path(path_to_output_files / 'swissmodel_structures' / f'{protein}_{template}_{qmean_norm}.txt')
print('Downloading for Protein:', protein + ' Model: ' + template)
with open(name, 'wb') as f:
f.write(req.content)
else:
print(f'Model exists for {protein}.')
name = Path(path_to_output_files / 'swissmodel_structures' / f'{protein}_{template}_{qmean_norm}.txt')
swiss_dp = protein + '_' + template + '_' + qmean_norm
if swiss_dp not in existing_free_sasa:
(run_freesasa(Path(path_to_output_files / 'swissmodel_structures' / f'{swiss_dp}.txt'),
Path(path_to_output_files / 'freesasa_files' / f'{swiss_dp}.txt'), include_hetatms=True,
outdir=None, force_rerun=False, file_type='pdb'))
filename = Path(path_to_output_files / 'freesasa_files' / f'{swiss_dp}.txt')
swiss_models_with_data.at[i, 'sasa'] = sasa(protein, varPos, wt, 1, filename, path_to_output_files,
file_type='pdb')
with open(name, encoding="utf8") as f:
lines = f.readlines()
for row in lines:
if row[0:4] == 'ATOM' and row[13:15] == 'CA':
position = int(row[22:26].strip())
chain = row[20:22].strip()
aminoacid = threeToOne(row[17:20])
coords = [row[31:38].strip(), row[39:46].strip(), row[47:54].strip()]
coordDict[position] = coords
if int(position) == int(varPos):
AAonPDB = aminoacid
coordVAR = coords
if (row[0:3] == 'TER') or (row[0:3] == 'END'):
swiss_models_with_data.loc[i, 'coordinates'] = str(coordDict)
swiss_models_with_data.loc[i, 'AAonPDB'] = str(AAonPDB)
swiss_models_with_data.loc[i, 'coordVAR'] = str(coordVAR)
break
if swiss_models_with_data.at[i, 'AAonPDB'] == swiss_models_with_data.at[i, 'wt']:
swiss_models_with_data.at[i, 'PDB_ALIGN_STATUS'] = 'aligned'
else:
swiss_models_with_data.at[i, 'PDB_ALIGN_STATUS'] = 'notAligned'
swiss_models_with_data.sort_values(['uniprotID', 'wt', 'pos', 'mut', 'PDB_ALIGN_STATUS', 'qmean_norm'],
ascending=[True, True, True, True, True, False], inplace=True)
swiss_models_with_data.drop_duplicates(['uniprotID', 'wt', 'pos', 'mut'], keep='first', inplace=True)
obsolete = swiss_models_with_data[pd.isna(swiss_models_with_data.coordVAR)]
no_swiss_models_updated = pd.concat([no_swiss_models_updated, obsolete])
swiss_models_with_data = swiss_models_with_data.fillna(np.NaN)
else:
swiss_models_with_data = pd.DataFrame()
no_swiss_models_updated = pd.DataFrame()
no_swiss_models_updated = no_swiss_models_updated[SIMPLE_COLS]
return swiss_models_with_data, no_swiss_models_updated