Spaces:
Sleeping
Sleeping
from collections import Counter | |
import pandas as pd | |
import numpy as np | |
def add_domains(data, path_to_domains): | |
DOMAINS = pd.read_csv(path_to_domains, delimiter=' ') | |
data = data.merge(DOMAINS, right_on='proteinID', left_on='uniprotID', how='left') | |
data.domStart = data.domStart.astype('Int64') | |
data.domEnd = data.domEnd.astype('Int64') | |
data = data.drop(['proteinID'], axis=1) | |
data['distance'] = np.NaN | |
zeroDistanceDomains = [] | |
for i in data.index: | |
if pd.isna(data.at[i, 'domain']): | |
data.at[i, 'distance'] = np.NaN | |
else: | |
if int(data.at[i, 'domStart']) <= int(data.at[i, 'pos']) <= int(data.at[i, 'domEnd']): | |
data.at[i, 'distance'] = 0 | |
DOMAIN_NAME = data.at[i, 'domain'] | |
zeroDistanceDomains.append(DOMAIN_NAME) | |
data = data.sort_values(by=['datapoint', 'distance']).reset_index(drop=True) # Distances will be sorted. | |
ZeroDistance = data[data.distance == 0.0] | |
NotZeroDistance = data[data.distance != 0.0] | |
NotZeroDistance.distance = -1000 | |
NotZeroDistance = NotZeroDistance[~NotZeroDistance.datapoint.isin(ZeroDistance.datapoint.to_list())] | |
data = pd.concat([ZeroDistance, NotZeroDistance], sort=False) | |
data.reset_index(drop=True, inplace=True) | |
data.fillna(-1, inplace=True) | |
return data | |