Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import gradio as gr | |
| import torch | |
| from pdf2image import convert_from_path | |
| from PIL import Image | |
| from torch.utils.data import DataLoader | |
| from tqdm import tqdm | |
| from transformers import AutoProcessor | |
| sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) | |
| from colpali_engine.models.paligemma_colbert_architecture import ColPali | |
| from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator | |
| from colpali_engine.utils.colpali_processing_utils import process_images, process_queries | |
| def search(query: str, ds, images, k): | |
| qs = [] | |
| with torch.no_grad(): | |
| batch_query = process_queries(processor, [query], mock_image) | |
| batch_query = {k: v.to(device) for k, v in batch_query.items()} | |
| embeddings_query = model(**batch_query) | |
| qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) | |
| # run evaluation | |
| retriever_evaluator = CustomEvaluator(is_multi_vector=True) | |
| scores = retriever_evaluator.evaluate(qs, ds) | |
| top_k_indices = scores.argsort(axis=1)[0][-k:][::-1] | |
| results = [] | |
| for idx in top_k_indices: | |
| results.append((images[idx], f"Page {idx}")) | |
| return results | |
| #best_page = int(scores.argmax(axis=1).item()) | |
| #return f"The most relevant page is {best_page}", images[best_page] | |
| def index(file, ds): | |
| """Example script to run inference with ColPali""" | |
| images = [] | |
| for f in file: | |
| images.extend(convert_from_path(f)) | |
| # run inference - docs | |
| dataloader = DataLoader( | |
| images, | |
| batch_size=4, | |
| shuffle=False, | |
| collate_fn=lambda x: process_images(processor, x), | |
| ) | |
| for batch_doc in tqdm(dataloader): | |
| with torch.no_grad(): | |
| batch_doc = {k: v.to(device) for k, v in batch_doc.items()} | |
| embeddings_doc = model(**batch_doc) | |
| ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) | |
| return f"Uploaded and converted {len(images)} pages", ds, images | |
| COLORS = ["#4285f4", "#db4437", "#f4b400", "#0f9d58", "#e48ef1"] | |
| # Load model | |
| model_name = "vidore/colpali" | |
| token = os.environ.get("HF_TOKEN") | |
| model = ColPali.from_pretrained( | |
| "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token=token | |
| ).eval() | |
| model.load_adapter(model_name) | |
| processor = AutoProcessor.from_pretrained(model_name, token=token) | |
| device = model.device | |
| mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚🔍") | |
| gr.Markdown("## 1️⃣ Upload PDFs") | |
| file = gr.File(file_types=["pdf"], file_count="multiple") | |
| gr.Markdown("## 2️⃣ Convert the PDFs and upload") | |
| convert_button = gr.Button("🔄 Convert and upload") | |
| message = gr.Textbox("Files not yet uploaded") | |
| embeds = gr.State(value=[]) | |
| imgs = gr.State(value=[]) | |
| # Define the actions | |
| convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) | |
| gr.Markdown("## 3️⃣ Search") | |
| query = gr.Textbox(placeholder="Enter your query here") | |
| search_button = gr.Button("🔍 Search") | |
| message2 = gr.Textbox("Query not yet set") | |
| output_img = gr.Image() | |
| k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5) | |
| search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[message2, output_img]) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch(debug=True) | |