Spaces:
Running
Running
Commit
·
7b757be
1
Parent(s):
57263c9
Fix by not specifying the col widths
Browse files
app.py
CHANGED
|
@@ -150,11 +150,10 @@ with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Default(primary_hue=c
|
|
| 150 |
value=filter_leaderboard('VerilogEval S2R', 'All', "", 700),
|
| 151 |
headers="first row",
|
| 152 |
show_row_numbers=True,
|
| 153 |
-
wrap=
|
| 154 |
datatype=["markdown", "html",],
|
| 155 |
-
interactive=
|
| 156 |
-
|
| 157 |
-
)
|
| 158 |
|
| 159 |
with gr.Tab("Interactive Bubble Plot"):
|
| 160 |
with gr.Row():
|
|
|
|
| 150 |
value=filter_leaderboard('VerilogEval S2R', 'All', "", 700),
|
| 151 |
headers="first row",
|
| 152 |
show_row_numbers=True,
|
| 153 |
+
wrap=False,
|
| 154 |
datatype=["markdown", "html",],
|
| 155 |
+
interactive=True,
|
| 156 |
+
column_widths=["5%", "28%", "10%", "14%"],)
|
|
|
|
| 157 |
|
| 158 |
with gr.Tab("Interactive Bubble Plot"):
|
| 159 |
with gr.Row():
|
utils.py
CHANGED
|
@@ -53,7 +53,7 @@ def filter_bench_all(subset: pd.DataFrame) -> pd.DataFrame:
|
|
| 53 |
pivot_df['Model'] = pivot_df.apply(lambda row: model_hyperlink(row["Model URL"], row["Model"]), axis=1)
|
| 54 |
pivot_df['Type'] = pivot_df['Model Type'].map(lambda x: type_emoji.get(x, ""))
|
| 55 |
pivot_df.rename(columns={
|
| 56 |
-
'Exact Matching (EM)': 'Avg EM',
|
| 57 |
'Syntax (STX)': 'Avg STX',
|
| 58 |
'Functionality (FNC)': 'Avg FNC',
|
| 59 |
'Synthesis (SYN)': 'Avg SYN',
|
|
@@ -61,7 +61,8 @@ def filter_bench_all(subset: pd.DataFrame) -> pd.DataFrame:
|
|
| 61 |
'Performance': 'Avg Perf',
|
| 62 |
'Area': 'Avg Area',
|
| 63 |
}, inplace=True)
|
| 64 |
-
columns_order = ['Type', 'Model', 'Params', '🐢 Score (Avg of all) ⬆️', 'Avg
|
|
|
|
| 65 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
| 66 |
pivot_df = pivot_df.sort_values(by='🐢 Score (Avg of all) ⬆️', ascending=False).reset_index(drop=True)
|
| 67 |
# pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
|
|
|
|
| 53 |
pivot_df['Model'] = pivot_df.apply(lambda row: model_hyperlink(row["Model URL"], row["Model"]), axis=1)
|
| 54 |
pivot_df['Type'] = pivot_df['Model Type'].map(lambda x: type_emoji.get(x, ""))
|
| 55 |
pivot_df.rename(columns={
|
| 56 |
+
# 'Exact Matching (EM)': 'Avg EM',
|
| 57 |
'Syntax (STX)': 'Avg STX',
|
| 58 |
'Functionality (FNC)': 'Avg FNC',
|
| 59 |
'Synthesis (SYN)': 'Avg SYN',
|
|
|
|
| 61 |
'Performance': 'Avg Perf',
|
| 62 |
'Area': 'Avg Area',
|
| 63 |
}, inplace=True)
|
| 64 |
+
columns_order = ['Type', 'Model', 'Params', '🐢 Score (Avg of all) ⬆️', 'Avg STX', 'Avg FNC', 'Avg SYN', 'Avg Power', 'Avg Perf', 'Avg Area']
|
| 65 |
+
# columns_order = ['Type', 'Model', 'Params', '🐢 Score (Avg of all) ⬆️', 'Avg EM', 'Avg STX', 'Avg FNC', 'Avg SYN', 'Avg Power', 'Avg Perf', 'Avg Area']
|
| 66 |
pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
|
| 67 |
pivot_df = pivot_df.sort_values(by='🐢 Score (Avg of all) ⬆️', ascending=False).reset_index(drop=True)
|
| 68 |
# pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
|