HMC-CIS-chatbot / utils /chatbot_interface4.py
diego2317's picture
Update utils/chatbot_interface4.py
3e81867 verified
import os
import json
import logging
from typing import Optional
import asyncio
import gradio as gr
from utils.response_manager import ResponseManager
class ChatbotInterface:
def __init__(self,
model: str = "gpt-4o-mini",
temperature: float = 0,
max_output_tokens: int = 600,
max_num_results: int = 5,
vector_store_id: Optional[str] = None,
api_key: Optional[str] = None,
meta_prompt_file: Optional[str] = None,
config_path: str = 'config/gradio_config.json'
):
"""
Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager.
:param config_path: Path to the configuration JSON file.
:param model: The OpenAI model to use (default: 'gpt-4o-mini').
:param temperature: The temperature for response generation (default: 0).
:param max_output_tokens: The maximum number of output tokens (default: 800).
:param max_num_results: The maximum number of search results to return (default: 15).
:param vector_store_id: The ID of the vector store to use for file search.
:param api_key: The OpenAI API key for authentication.
:param meta_prompt_file: Path to the meta prompt file .
"""
# Parameters for UI
self.config = self.load_config(config_path)
self.title = self.config["chatbot_title"]
self.description = self.config["chatbot_description"]
self.input_placeholder = self.config["chatbot_input_placeholder"]
self.output_label = self.config["chatbot_output_label"]
# Parameters for ResponseManager class
self.model = model
self.temperature = temperature
self.max_output_tokens = max_output_tokens
self.max_num_results = max_num_results
self.vector_store_id = vector_store_id
self.api_key = api_key
self.meta_prompt_file = meta_prompt_file
@staticmethod
def load_config(config_path: str) -> dict:
"""
Load the configuration for Gradio GUI interface from the JSON file.
:param config_path: Path to the configuration JSON file.
:return: Configuration dictionary.
"""
logging.info(f"Loading configuration from {config_path}...")
if not os.path.exists(config_path):
logging.error(f"Configuration file not found: {config_path}")
raise FileNotFoundError(f"Configuration file not found: {config_path}")
with open(config_path, 'r') as config_file:
config = json.load(config_file)
required_keys = [
"chatbot_title",
"chatbot_description",
"chatbot_input_placeholder",
"chatbot_output_label"
]
for key in required_keys:
if key not in config:
logging.error(f"Missing required configuration key: {key}")
raise ValueError(f"Missing required configuration key: {key}")
return config
def create_interface(self) -> gr.Blocks:
"""
Create the Gradio Blocks interface that displays a single container including both
the text input and a small arrow submit button. The interface will clear the text input
after each message is submitted.
"""
logging.info("Creating Gradio interface...")
with gr.Blocks() as demo:
# Title and description area.
gr.Markdown(f"## {self.title}\n{self.description}")
# Chatbot output area.
chatbot_output = gr.Chatbot(label=self.output_label, type="messages")
# Session-specific states
conversation_state = gr.State([])
response_manager_state = gr.State(None)
# Row area.
with gr.Row(elem_id="input-container", equal_height=True):
reset = gr.ClearButton(
value="Clear history πŸ”„",
variant="secondary",
elem_id="reset-button",
size="lg"
)
user_input = gr.Textbox(
lines=1,
show_label=False, # Hide label for a unified look.
elem_id="chat-input",
placeholder=self.input_placeholder,
scale=500,
)
# Initialization function for session-specific response manager
def init_response_manager():
try:
rm = ResponseManager(
model=self.model,
temperature=self.temperature,
max_output_tokens=self.max_output_tokens,
max_num_results=self.max_num_results,
vector_store_id=self.vector_store_id,
api_key=self.api_key,
meta_prompt_file=self.meta_prompt_file
)
logging.info(
"ChatbotInterface initialized with the following parameters:\n"
f" - Model: {self.model}\n"
f" - Temperature: {self.temperature}\n"
f" - Max Output Tokens: {self.max_output_tokens}\n"
f" - Max Number of Results: {self.max_num_results}\n"
)
rm.reset_conversation()
return rm
except Exception as e:
logging.error(f"Failed to initialize ResponseManager: {e}")
raise
# Reset function updated to reset ResponseManager
def reset_output():
response_manager = init_response_manager()
return [], [], response_manager, "" # Returns [chatbot_output,conversation_state, response_manager_state, user_input]
# Process input now uses session-specific ResponseManager
async def process_input(user_message, chat_history, response_manager):
updated_history = await response_manager.generate_response(user_message, chat_history)
return updated_history, updated_history, response_manager, "" # Returns [chatbot_output, conversation_state, response_manager_state, user_input]
# Initialize ResponseManager object for a session on load
demo.load(
fn=init_response_manager,
inputs=None,
outputs=response_manager_state # Each session state gets its own instance of ResponseManager class
)
# CLearButton action
reset.click(
fn=reset_output,
inputs=None,
outputs=[chatbot_output, conversation_state, response_manager_state, user_input]
)
# Enter to trigger response generation
user_input.submit(
fn=process_input,
inputs=[user_input, conversation_state, response_manager_state],
outputs=[chatbot_output, conversation_state, response_manager_state, user_input]
)
logging.info("Gradio interface created successfully.")
return demo