Spaces:
Running
Running
TEST: added timestamp(may not correct)
Browse files- analyzer/ASR_en_us.py +224 -126
analyzer/ASR_en_us.py
CHANGED
|
@@ -1,60 +1,73 @@
|
|
| 1 |
-
# ASR_en_us.py
|
| 2 |
-
|
| 3 |
import torch
|
| 4 |
import soundfile as sf
|
| 5 |
import librosa
|
| 6 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 7 |
import os
|
| 8 |
-
from phonemizer import phonemize
|
| 9 |
import numpy as np
|
| 10 |
from datetime import datetime, timezone
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
-
print(f"INFO:
|
| 15 |
|
| 16 |
-
#
|
| 17 |
MODEL_NAME = "MultiBridge/wav2vec-LnNor-IPA-ft"
|
| 18 |
-
|
| 19 |
processor = None
|
|
|
|
| 20 |
model = None
|
| 21 |
|
| 22 |
def load_model():
|
| 23 |
"""
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
"""
|
| 27 |
-
global processor, model
|
|
|
|
| 28 |
if processor and model:
|
| 29 |
print(f"模型 '{MODEL_NAME}' 已載入,跳過。")
|
| 30 |
return True
|
| 31 |
|
| 32 |
print(f"正在準備 ASR 模型 '{MODEL_NAME}'...")
|
| 33 |
-
print(f"Transformers 將自動在 HF_HOME 指定的快取中尋找或下載。")
|
| 34 |
try:
|
| 35 |
-
# 直接使用模型的線上名稱調用 from_pretrained
|
| 36 |
-
# 這就是魔法發生的地方!
|
| 37 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
| 38 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
| 39 |
-
|
| 40 |
model.to(DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
print(f"模型 '{MODEL_NAME}' 和處理器載入成功!")
|
| 42 |
return True
|
| 43 |
except Exception as e:
|
| 44 |
-
print(f"
|
| 45 |
raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}")
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
# 移除了包含 'ː' 的組合,因為我們將在源頭移除它
|
| 49 |
MULTI_CHAR_PHONEMES = {
|
| 50 |
-
'tʃ', 'dʒ',
|
| 51 |
-
'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ',
|
| 52 |
-
'ɪə', 'eə', 'ʊə', 'ər'
|
| 53 |
}
|
| 54 |
|
| 55 |
def _tokenize_ipa(ipa_string: str) -> list:
|
| 56 |
"""
|
| 57 |
-
|
| 58 |
"""
|
| 59 |
phonemes = []
|
| 60 |
i = 0
|
|
@@ -68,132 +81,115 @@ def _tokenize_ipa(ipa_string: str) -> list:
|
|
| 68 |
i += 1
|
| 69 |
return phonemes
|
| 70 |
|
| 71 |
-
#
|
| 72 |
def analyze(audio_file_path: str, target_sentence: str) -> dict:
|
| 73 |
"""
|
| 74 |
接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。
|
| 75 |
-
|
| 76 |
"""
|
| 77 |
if not processor or not model:
|
| 78 |
-
raise RuntimeError("
|
| 79 |
-
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
target_ipa_by_word = [
|
| 85 |
_tokenize_ipa(word.replace('ˌ', '').replace('ˈ', '').replace('ː', ''))
|
| 86 |
for word in target_ipa_by_word_str
|
| 87 |
]
|
| 88 |
target_words_original = target_sentence.split()
|
| 89 |
|
|
|
|
| 90 |
try:
|
| 91 |
speech, sample_rate = sf.read(audio_file_path)
|
| 92 |
if sample_rate != 16000:
|
| 93 |
speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000)
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
raise IOError(f"讀取或處理音訊時發生錯誤: {e}")
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
with torch.no_grad():
|
| 100 |
logits = model(input_values).logits
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
# 這是您原始程式碼的流程,我們先獲取不帶時間戳的辨識結果
|
| 104 |
-
user_ipa_full = processor.decode(predicted_ids[0])
|
| 105 |
|
| 106 |
-
#
|
|
|
|
| 107 |
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
| 134 |
})
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
#
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
word_start_time = None
|
| 144 |
-
word_end_time = None
|
| 145 |
-
|
| 146 |
-
for phoneme_data in word_data["phonemes"]:
|
| 147 |
-
user_phoneme = phoneme_data["user"]
|
| 148 |
-
|
| 149 |
-
# 預設時間戳為 null
|
| 150 |
-
phoneme_data["startTime"] = None
|
| 151 |
-
phoneme_data["endTime"] = None
|
| 152 |
-
|
| 153 |
-
# 如果使用者發音不是'-',且在時間戳映射中能找到
|
| 154 |
-
if user_phoneme != '-' and user_phoneme in ts_map_copy and ts_map_copy[user_phoneme]:
|
| 155 |
-
# 取出並移除第一個可用的時間戳(先進先出)
|
| 156 |
-
ts = ts_map_copy[user_phoneme].pop(0)
|
| 157 |
-
|
| 158 |
-
# 為音素注入時間戳
|
| 159 |
-
phoneme_data["startTime"] = ts["start_time"]
|
| 160 |
-
phoneme_data["endTime"] = ts["end_time"]
|
| 161 |
-
|
| 162 |
-
# 更新單字的時間戳
|
| 163 |
-
if word_start_time is None:
|
| 164 |
-
word_start_time = ts["start_time"]
|
| 165 |
-
word_end_time = ts["end_time"] # 不斷更新為最後一個音素的結束時間
|
| 166 |
-
|
| 167 |
-
# 為單字注入時間戳
|
| 168 |
-
word_data["startTime"] = word_start_time
|
| 169 |
-
word_data["endTime"] = word_end_time
|
| 170 |
-
|
| 171 |
-
return initial_result
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
# --- 4. 對齊函數 (與上一版相同) ---
|
| 176 |
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
|
| 177 |
"""
|
| 178 |
-
|
| 179 |
"""
|
| 180 |
user_phonemes = _tokenize_ipa(user_phoneme_str)
|
| 181 |
-
|
| 182 |
target_phonemes_flat = []
|
| 183 |
-
word_boundaries_indices = []
|
| 184 |
current_idx = 0
|
| 185 |
for word_ipa_tokens in target_words_ipa_tokenized:
|
| 186 |
target_phonemes_flat.extend(word_ipa_tokens)
|
| 187 |
current_idx += len(word_ipa_tokens)
|
| 188 |
word_boundaries_indices.append(current_idx - 1)
|
| 189 |
|
|
|
|
| 190 |
dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1))
|
| 191 |
for i in range(1, len(user_phonemes) + 1): dp[i][0] = i
|
| 192 |
for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j
|
|
|
|
| 193 |
for i in range(1, len(user_phonemes) + 1):
|
| 194 |
for j in range(1, len(target_phonemes_flat) + 1):
|
| 195 |
cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
|
| 196 |
-
dp[i][j] = min(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
i, j = len(user_phonemes), len(target_phonemes_flat)
|
| 199 |
user_path, target_path = [], []
|
|
@@ -205,73 +201,60 @@ def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized
|
|
| 205 |
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1
|
| 206 |
else:
|
| 207 |
user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1
|
| 208 |
-
|
| 209 |
alignments_by_word = []
|
| 210 |
word_start_idx_in_path = 0
|
| 211 |
target_phoneme_counter_in_path = 0
|
| 212 |
-
|
| 213 |
for path_idx, p in enumerate(target_path):
|
| 214 |
if p != '-':
|
| 215 |
if target_phoneme_counter_in_path in word_boundaries_indices:
|
| 216 |
target_alignment = target_path[word_start_idx_in_path : path_idx + 1]
|
| 217 |
-
user_alignment
|
| 218 |
-
|
| 219 |
alignments_by_word.append({
|
| 220 |
"target": target_alignment,
|
| 221 |
"user": user_alignment
|
| 222 |
})
|
| 223 |
-
|
| 224 |
word_start_idx_in_path = path_idx + 1
|
| 225 |
-
|
| 226 |
target_phoneme_counter_in_path += 1
|
| 227 |
-
|
| 228 |
return alignments_by_word
|
| 229 |
|
| 230 |
-
#
|
| 231 |
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
| 232 |
total_phonemes = 0
|
| 233 |
total_errors = 0
|
| 234 |
correct_words_count = 0
|
| 235 |
words_data = []
|
| 236 |
-
|
| 237 |
num_words_to_process = min(len(alignments), len(original_words))
|
| 238 |
|
| 239 |
for i in range(num_words_to_process):
|
| 240 |
alignment = alignments[i]
|
| 241 |
word_is_correct = True
|
| 242 |
phonemes_data = []
|
| 243 |
-
|
| 244 |
for j in range(len(alignment['target'])):
|
| 245 |
target_phoneme = alignment['target'][j]
|
| 246 |
user_phoneme = alignment['user'][j]
|
| 247 |
is_match = (user_phoneme == target_phoneme)
|
| 248 |
-
|
| 249 |
phonemes_data.append({
|
| 250 |
"target": target_phoneme,
|
| 251 |
"user": user_phoneme,
|
| 252 |
"isMatch": is_match
|
| 253 |
})
|
| 254 |
-
|
| 255 |
if not is_match:
|
| 256 |
word_is_correct = False
|
| 257 |
if not (user_phoneme == '-' and target_phoneme == '-'):
|
| 258 |
total_errors += 1
|
| 259 |
-
|
| 260 |
if word_is_correct:
|
| 261 |
correct_words_count += 1
|
| 262 |
-
|
| 263 |
words_data.append({
|
| 264 |
"word": original_words[i],
|
| 265 |
"isCorrect": word_is_correct,
|
| 266 |
"phonemes": phonemes_data
|
| 267 |
})
|
| 268 |
-
|
| 269 |
total_phonemes += sum(1 for p in alignment['target'] if p != '-')
|
| 270 |
|
| 271 |
total_words = len(original_words)
|
| 272 |
if len(alignments) < total_words:
|
| 273 |
for i in range(len(alignments), total_words):
|
| 274 |
-
# 確保這裡也移除 'ː'
|
| 275 |
missed_word_ipa_str = phonemize(original_words[i], language='en-us', backend='espeak', strip=True).replace('ː', '')
|
| 276 |
missed_word_ipa = _tokenize_ipa(missed_word_ipa_str)
|
| 277 |
phonemes_data = []
|
|
@@ -279,7 +262,6 @@ def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
|
| 279 |
phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False})
|
| 280 |
total_errors += 1
|
| 281 |
total_phonemes += 1
|
| 282 |
-
|
| 283 |
words_data.append({
|
| 284 |
"word": original_words[i],
|
| 285 |
"isCorrect": False,
|
|
@@ -302,5 +284,121 @@ def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
|
| 302 |
},
|
| 303 |
"words": words_data
|
| 304 |
}
|
| 305 |
-
|
| 306 |
return final_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ASR_en_us.py (fixed & replace-with)
|
|
|
|
| 2 |
import torch
|
| 3 |
import soundfile as sf
|
| 4 |
import librosa
|
|
|
|
| 5 |
import os
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
from datetime import datetime, timezone
|
| 8 |
|
| 9 |
+
from phonemizer import phonemize
|
| 10 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 11 |
+
|
| 12 |
+
# Optional: LM-assisted decoder (preferred for robust offsets)
|
| 13 |
+
try:
|
| 14 |
+
from transformers import Wav2Vec2ProcessorWithLM
|
| 15 |
+
HAS_WITH_LM = True
|
| 16 |
+
except Exception:
|
| 17 |
+
HAS_WITH_LM = False
|
| 18 |
+
|
| 19 |
+
# ---------- Device ----------
|
| 20 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
print(f"INFO: ASR_en_us.py is configured to use device: {DEVICE}")
|
| 22 |
|
| 23 |
+
# ---------- Global & model ----------
|
| 24 |
MODEL_NAME = "MultiBridge/wav2vec-LnNor-IPA-ft"
|
|
|
|
| 25 |
processor = None
|
| 26 |
+
processor_lm = None
|
| 27 |
model = None
|
| 28 |
|
| 29 |
def load_model():
|
| 30 |
"""
|
| 31 |
+
載入模型與處理器:
|
| 32 |
+
- 先載標準 Processor + 模型
|
| 33 |
+
- 若可用,再載 LM Processor 以取得更穩定的 offsets
|
| 34 |
"""
|
| 35 |
+
global processor, processor_lm, model
|
| 36 |
+
|
| 37 |
if processor and model:
|
| 38 |
print(f"模型 '{MODEL_NAME}' 已載入,跳過。")
|
| 39 |
return True
|
| 40 |
|
| 41 |
print(f"正在準備 ASR 模型 '{MODEL_NAME}'...")
|
|
|
|
| 42 |
try:
|
|
|
|
|
|
|
| 43 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
| 44 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
|
|
|
| 45 |
model.to(DEVICE)
|
| 46 |
+
|
| 47 |
+
if HAS_WITH_LM:
|
| 48 |
+
try:
|
| 49 |
+
processor_lm = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_NAME)
|
| 50 |
+
print("LM 解碼器載入成功:將優先使用 logits + LM 取得 offsets。")
|
| 51 |
+
except Exception as e:
|
| 52 |
+
processor_lm = None
|
| 53 |
+
print(f"LM 解碼器不可用({e}),回退到標準解碼。")
|
| 54 |
+
|
| 55 |
print(f"模型 '{MODEL_NAME}' 和處理器載入成功!")
|
| 56 |
return True
|
| 57 |
except Exception as e:
|
| 58 |
+
print(f"載入模型/處理器時發生錯誤: {e}")
|
| 59 |
raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}")
|
| 60 |
|
| 61 |
+
# ---------- IPA multi-char handling ----------
|
|
|
|
| 62 |
MULTI_CHAR_PHONEMES = {
|
| 63 |
+
'tʃ', 'dʒ', # Affricates
|
| 64 |
+
'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ', # Diphthongs
|
| 65 |
+
'ɪə', 'eə', 'ʊə', 'ər' # R-controlled & others
|
| 66 |
}
|
| 67 |
|
| 68 |
def _tokenize_ipa(ipa_string: str) -> list:
|
| 69 |
"""
|
| 70 |
+
智能切分 IPA 字串為音素列表,處理多字元音素。
|
| 71 |
"""
|
| 72 |
phonemes = []
|
| 73 |
i = 0
|
|
|
|
| 81 |
i += 1
|
| 82 |
return phonemes
|
| 83 |
|
| 84 |
+
# ---------- Core analyze ----------
|
| 85 |
def analyze(audio_file_path: str, target_sentence: str) -> dict:
|
| 86 |
"""
|
| 87 |
接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。
|
| 88 |
+
修正:以 logits 取得 offsets,保留 CTC 時序;順序注入;多字元音素聚合;詞級時間回寫。
|
| 89 |
"""
|
| 90 |
if not processor or not model:
|
| 91 |
+
raise RuntimeError("模型尚未載入。請先呼叫 load_model()。")
|
| 92 |
+
|
| 93 |
+
# 1) 目標 IPA 解析
|
| 94 |
+
target_ipa_by_word_str = phonemize(
|
| 95 |
+
target_sentence,
|
| 96 |
+
language='en-us',
|
| 97 |
+
backend='espeak',
|
| 98 |
+
with_stress=True,
|
| 99 |
+
strip=True
|
| 100 |
+
).split()
|
| 101 |
+
|
| 102 |
+
# 去掉重音與長度符號
|
| 103 |
target_ipa_by_word = [
|
| 104 |
_tokenize_ipa(word.replace('ˌ', '').replace('ˈ', '').replace('ː', ''))
|
| 105 |
for word in target_ipa_by_word_str
|
| 106 |
]
|
| 107 |
target_words_original = target_sentence.split()
|
| 108 |
|
| 109 |
+
# 2) 讀取與重取樣
|
| 110 |
try:
|
| 111 |
speech, sample_rate = sf.read(audio_file_path)
|
| 112 |
if sample_rate != 16000:
|
| 113 |
speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000)
|
| 114 |
+
sample_rate = 16000
|
| 115 |
except Exception as e:
|
| 116 |
raise IOError(f"讀取或處理音訊時發生錯誤: {e}")
|
| 117 |
+
|
| 118 |
+
# 3) 前處理 & 模型推論
|
| 119 |
+
inputs = processor(speech, sampling_rate=sample_rate, return_tensors="pt")
|
| 120 |
+
input_values = inputs.input_values.to(DEVICE)
|
| 121 |
+
|
| 122 |
with torch.no_grad():
|
| 123 |
logits = model(input_values).logits
|
| 124 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
# 使用者 IPA(不含時間戳) + 對齊
|
| 127 |
+
user_ipa_full = processor.decode(pred_ids[0])
|
| 128 |
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
|
| 129 |
+
result = _format_to_json_structure(word_alignments, target_sentence, target_words_original)
|
| 130 |
+
|
| 131 |
+
# 4) 取得 offsets(優先 logits+LM,否則回退)
|
| 132 |
+
char_offsets = None
|
| 133 |
+
if processor_lm is not None:
|
| 134 |
+
try:
|
| 135 |
+
lm_out = processor_lm.batch_decode(logits.cpu().numpy())
|
| 136 |
+
if hasattr(lm_out, "char_offsets") and lm_out.char_offsets:
|
| 137 |
+
char_offsets = lm_out.char_offsets[0]
|
| 138 |
+
except Exception as e:
|
| 139 |
+
print(f"LM 解碼 offsets 失敗,回退到標準。原因: {e}")
|
| 140 |
+
|
| 141 |
+
if char_offsets is None:
|
| 142 |
+
transcription_with_offsets = processor.batch_decode(
|
| 143 |
+
pred_ids,
|
| 144 |
+
output_char_offsets=True
|
| 145 |
+
)
|
| 146 |
+
char_offsets = transcription_with_offsets.char_offsets[0] if hasattr(transcription_with_offsets, "char_offsets") else []
|
| 147 |
+
|
| 148 |
+
# 5) offsets 轉秒並按順序注入
|
| 149 |
+
step_sec = (model.config.inputs_to_logits_ratio / float(sample_rate)) # 例如 320/16000=0.02s
|
| 150 |
+
ts_seq = []
|
| 151 |
+
for off in char_offsets:
|
| 152 |
+
s = round(off.get('start_offset', None) * step_sec, 3) if off.get('start_offset', None) is not None else None
|
| 153 |
+
e = round(off.get('end_offset', None) * step_sec, 3) if off.get('end_offset', None) is not None else None
|
| 154 |
+
ts_seq.append({
|
| 155 |
+
"char": off.get('char', ''),
|
| 156 |
+
"start": s,
|
| 157 |
+
"end": e
|
| 158 |
})
|
| 159 |
|
| 160 |
+
_inject_timestamps_in_order(result, ts_seq)
|
| 161 |
+
|
| 162 |
+
# 6) 補上分析時間戳
|
| 163 |
+
result["analysisTimestampUTC"] = datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S (UTC)')
|
| 164 |
+
return result
|
| 165 |
+
|
| 166 |
+
# ---------- Alignment ----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
|
| 168 |
"""
|
| 169 |
+
使用新的切分邏輯執行音素對齊:輸出 by-word 的 user/target 對齊路徑。
|
| 170 |
"""
|
| 171 |
user_phonemes = _tokenize_ipa(user_phoneme_str)
|
|
|
|
| 172 |
target_phonemes_flat = []
|
| 173 |
+
word_boundaries_indices = []
|
| 174 |
current_idx = 0
|
| 175 |
for word_ipa_tokens in target_words_ipa_tokenized:
|
| 176 |
target_phonemes_flat.extend(word_ipa_tokens)
|
| 177 |
current_idx += len(word_ipa_tokens)
|
| 178 |
word_boundaries_indices.append(current_idx - 1)
|
| 179 |
|
| 180 |
+
# DP for edit distance
|
| 181 |
dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1))
|
| 182 |
for i in range(1, len(user_phonemes) + 1): dp[i][0] = i
|
| 183 |
for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j
|
| 184 |
+
|
| 185 |
for i in range(1, len(user_phonemes) + 1):
|
| 186 |
for j in range(1, len(target_phonemes_flat) + 1):
|
| 187 |
cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
|
| 188 |
+
dp[i][j] = min(
|
| 189 |
+
dp[i-1][j] + 1,
|
| 190 |
+
dp[i][j-1] + 1,
|
| 191 |
+
dp[i-1][j-1] + cost
|
| 192 |
+
)
|
| 193 |
|
| 194 |
i, j = len(user_phonemes), len(target_phonemes_flat)
|
| 195 |
user_path, target_path = [], []
|
|
|
|
| 201 |
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1
|
| 202 |
else:
|
| 203 |
user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1
|
| 204 |
+
|
| 205 |
alignments_by_word = []
|
| 206 |
word_start_idx_in_path = 0
|
| 207 |
target_phoneme_counter_in_path = 0
|
|
|
|
| 208 |
for path_idx, p in enumerate(target_path):
|
| 209 |
if p != '-':
|
| 210 |
if target_phoneme_counter_in_path in word_boundaries_indices:
|
| 211 |
target_alignment = target_path[word_start_idx_in_path : path_idx + 1]
|
| 212 |
+
user_alignment = user_path[word_start_idx_in_path : path_idx + 1]
|
|
|
|
| 213 |
alignments_by_word.append({
|
| 214 |
"target": target_alignment,
|
| 215 |
"user": user_alignment
|
| 216 |
})
|
|
|
|
| 217 |
word_start_idx_in_path = path_idx + 1
|
|
|
|
| 218 |
target_phoneme_counter_in_path += 1
|
|
|
|
| 219 |
return alignments_by_word
|
| 220 |
|
| 221 |
+
# ---------- Formatting ----------
|
| 222 |
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
| 223 |
total_phonemes = 0
|
| 224 |
total_errors = 0
|
| 225 |
correct_words_count = 0
|
| 226 |
words_data = []
|
|
|
|
| 227 |
num_words_to_process = min(len(alignments), len(original_words))
|
| 228 |
|
| 229 |
for i in range(num_words_to_process):
|
| 230 |
alignment = alignments[i]
|
| 231 |
word_is_correct = True
|
| 232 |
phonemes_data = []
|
|
|
|
| 233 |
for j in range(len(alignment['target'])):
|
| 234 |
target_phoneme = alignment['target'][j]
|
| 235 |
user_phoneme = alignment['user'][j]
|
| 236 |
is_match = (user_phoneme == target_phoneme)
|
|
|
|
| 237 |
phonemes_data.append({
|
| 238 |
"target": target_phoneme,
|
| 239 |
"user": user_phoneme,
|
| 240 |
"isMatch": is_match
|
| 241 |
})
|
|
|
|
| 242 |
if not is_match:
|
| 243 |
word_is_correct = False
|
| 244 |
if not (user_phoneme == '-' and target_phoneme == '-'):
|
| 245 |
total_errors += 1
|
|
|
|
| 246 |
if word_is_correct:
|
| 247 |
correct_words_count += 1
|
|
|
|
| 248 |
words_data.append({
|
| 249 |
"word": original_words[i],
|
| 250 |
"isCorrect": word_is_correct,
|
| 251 |
"phonemes": phonemes_data
|
| 252 |
})
|
|
|
|
| 253 |
total_phonemes += sum(1 for p in alignment['target'] if p != '-')
|
| 254 |
|
| 255 |
total_words = len(original_words)
|
| 256 |
if len(alignments) < total_words:
|
| 257 |
for i in range(len(alignments), total_words):
|
|
|
|
| 258 |
missed_word_ipa_str = phonemize(original_words[i], language='en-us', backend='espeak', strip=True).replace('ː', '')
|
| 259 |
missed_word_ipa = _tokenize_ipa(missed_word_ipa_str)
|
| 260 |
phonemes_data = []
|
|
|
|
| 262 |
phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False})
|
| 263 |
total_errors += 1
|
| 264 |
total_phonemes += 1
|
|
|
|
| 265 |
words_data.append({
|
| 266 |
"word": original_words[i],
|
| 267 |
"isCorrect": False,
|
|
|
|
| 284 |
},
|
| 285 |
"words": words_data
|
| 286 |
}
|
|
|
|
| 287 |
return final_result
|
| 288 |
+
|
| 289 |
+
# ---------- Timestamp injection (new core) ----------
|
| 290 |
+
def _inject_timestamps_in_order(result_dict: dict, ts_seq: list):
|
| 291 |
+
"""
|
| 292 |
+
以「順序」把時間戳注入到每個音素與詞:
|
| 293 |
+
- 不用字串鍵映射,避免同符號多次出現造成錯位
|
| 294 |
+
- 多字元 IPA 音素以相鄰 char 聚合其時間邊界
|
| 295 |
+
- 寫回詞級 start/end;做基本數學一致性檢查
|
| 296 |
+
"""
|
| 297 |
+
# 依序消耗 char offsets
|
| 298 |
+
k = 0 # 指向 ts_seq
|
| 299 |
+
total_ts = len(ts_seq)
|
| 300 |
+
|
| 301 |
+
for word in result_dict["words"]:
|
| 302 |
+
word_start = None
|
| 303 |
+
word_end = None
|
| 304 |
+
|
| 305 |
+
for p in word["phonemes"]:
|
| 306 |
+
p_user = p.get("user", "-")
|
| 307 |
+
# 預設
|
| 308 |
+
p["startTime"] = None
|
| 309 |
+
p["endTime"] = None
|
| 310 |
+
|
| 311 |
+
if p_user == "-" or k >= total_ts:
|
| 312 |
+
continue
|
| 313 |
+
|
| 314 |
+
# 可能存在空白、分隔符等:跳過無效 char
|
| 315 |
+
while k < total_ts and (ts_seq[k]["char"] is None or ts_seq[k]["char"] == ""):
|
| 316 |
+
k += 1
|
| 317 |
+
if k >= total_ts:
|
| 318 |
+
break
|
| 319 |
+
if k >= total_ts:
|
| 320 |
+
break
|
| 321 |
+
|
| 322 |
+
# 精確匹配:下一個 char 等於整個音素
|
| 323 |
+
if ts_seq[k]["char"] == p_user:
|
| 324 |
+
s = ts_seq[k]["start"]; e = ts_seq[k]["end"]
|
| 325 |
+
if _valid_ts_pair(s, e):
|
| 326 |
+
p["startTime"] = s; p["endTime"] = e
|
| 327 |
+
word_start = s if word_start is None else word_start
|
| 328 |
+
word_end = e
|
| 329 |
+
k += 1
|
| 330 |
+
continue
|
| 331 |
+
|
| 332 |
+
# 多字元音素:嘗試聚合相鄰 char
|
| 333 |
+
if len(p_user) > 1:
|
| 334 |
+
agg_start = None
|
| 335 |
+
agg_end = None
|
| 336 |
+
consumed = 0
|
| 337 |
+
buffer = ""
|
| 338 |
+
|
| 339 |
+
while (k + consumed) < total_ts and len(buffer) < len(p_user):
|
| 340 |
+
cur_char = ts_seq[k + consumed]["char"] or ""
|
| 341 |
+
buffer += cur_char
|
| 342 |
+
ts_s = ts_seq[k + consumed]["start"]
|
| 343 |
+
ts_e = ts_seq[k + consumed]["end"]
|
| 344 |
+
if ts_s is not None:
|
| 345 |
+
agg_start = ts_s if agg_start is None else min(agg_start, ts_s)
|
| 346 |
+
if ts_e is not None:
|
| 347 |
+
agg_end = ts_e if agg_end is None else max(agg_end, ts_e)
|
| 348 |
+
consumed += 1
|
| 349 |
+
if buffer == p_user:
|
| 350 |
+
if _valid_ts_pair(agg_start, agg_end):
|
| 351 |
+
p["startTime"] = agg_start
|
| 352 |
+
p["endTime"] = agg_end
|
| 353 |
+
word_start = agg_start if word_start is None else word_start
|
| 354 |
+
word_end = agg_end
|
| 355 |
+
k += consumed
|
| 356 |
+
break
|
| 357 |
+
# 若聚合失敗,不消耗 ts_seq,保留 None
|
| 358 |
+
|
| 359 |
+
# 單字元但不相等:避免錯位,不消耗 ts_seq;保留 None
|
| 360 |
+
|
| 361 |
+
# 詞級時間回寫(以該詞第一/最後一個有時間的音素為邊界)
|
| 362 |
+
word["startTime"] = word_start
|
| 363 |
+
word["endTime"] = word_end
|
| 364 |
+
|
| 365 |
+
# 事後基本檢查:全局時間單調 & 音素不重疊
|
| 366 |
+
_sanitize_monotonic_and_nonoverlap(result_dict)
|
| 367 |
+
|
| 368 |
+
def _valid_ts_pair(s, e):
|
| 369 |
+
return (s is not None) and (e is not None) and (s <= e)
|
| 370 |
+
|
| 371 |
+
def _sanitize_monotonic_and_nonoverlap(result_dict: dict):
|
| 372 |
+
"""
|
| 373 |
+
保證列表中各音素時間不回退、不重疊(允許等邊界接觸),
|
| 374 |
+
並限制到非負與合理的浮點小數三位。
|
| 375 |
+
"""
|
| 376 |
+
last_end = None
|
| 377 |
+
for w in result_dict.get("words", []):
|
| 378 |
+
w_start = None
|
| 379 |
+
w_end = None
|
| 380 |
+
for p in w.get("phonemes", []):
|
| 381 |
+
s = p.get("startTime", None)
|
| 382 |
+
e = p.get("endTime", None)
|
| 383 |
+
if s is None or e is None:
|
| 384 |
+
continue
|
| 385 |
+
# 不重疊:若 s < last_end,則把 s 夾到 last_end
|
| 386 |
+
if last_end is not None and s < last_end:
|
| 387 |
+
s = last_end
|
| 388 |
+
# 非負與單調
|
| 389 |
+
if s < 0:
|
| 390 |
+
s = 0.0
|
| 391 |
+
if e < s:
|
| 392 |
+
e = s
|
| 393 |
+
# 四捨五入到 3 位
|
| 394 |
+
p["startTime"] = round(float(s), 3)
|
| 395 |
+
p["endTime"] = round(float(e), 3)
|
| 396 |
+
last_end = p["endTime"]
|
| 397 |
+
|
| 398 |
+
# 詞級邊界更新
|
| 399 |
+
w_start = p["startTime"] if w_start is None else w_start
|
| 400 |
+
w_end = p["endTime"]
|
| 401 |
+
|
| 402 |
+
# 回寫詞級
|
| 403 |
+
w["startTime"] = w_start if w_start is not None else w.get("startTime", None)
|
| 404 |
+
w["endTime"] = w_end if w_end is not None else w.get("endTime", None)
|