Spaces:
Running
Running
ADD: dutch
Browse files- analyzer/ASR_nl_nl.py +205 -0
analyzer/ASR_nl_nl.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =======================================================================
|
| 2 |
+
# analyzer/ASR_nl_nl.py
|
| 3 |
+
# 荷蘭語發音分析器
|
| 4 |
+
# 最終修正版 - 使用用戶指定的正確模型
|
| 5 |
+
# =======================================================================
|
| 6 |
+
|
| 7 |
+
# 1. 匯入區 (Imports)
|
| 8 |
+
import torch
|
| 9 |
+
import soundfile as sf
|
| 10 |
+
import librosa
|
| 11 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 12 |
+
import os
|
| 13 |
+
from phonemizer import phonemize
|
| 14 |
+
import numpy as np
|
| 15 |
+
from datetime import datetime, timezone
|
| 16 |
+
import re
|
| 17 |
+
import unicodedata
|
| 18 |
+
|
| 19 |
+
# =======================================================================
|
| 20 |
+
# 2. 全域變數與配置區
|
| 21 |
+
# =======================================================================
|
| 22 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
print(f"INFO: ASR_nl_nl.py is configured to use device: {DEVICE}")
|
| 24 |
+
|
| 25 |
+
# 【【【【【 最終的、決定性的修正 】】】】】
|
| 26 |
+
# 使用用戶指定的、正確的荷蘭語音素模型
|
| 27 |
+
MODEL_NAME = "Clementapa/wav2vec2-base-960h-phoneme-reco-dutch"
|
| 28 |
+
|
| 29 |
+
processor = None
|
| 30 |
+
model = None
|
| 31 |
+
|
| 32 |
+
# =======================================================================
|
| 33 |
+
# 3. 核心業務邏輯區
|
| 34 |
+
# =======================================================================
|
| 35 |
+
|
| 36 |
+
# -----------------------------------------------------------------------
|
| 37 |
+
# 3.1. 模型載入函數 (邏輯不變)
|
| 38 |
+
# -----------------------------------------------------------------------
|
| 39 |
+
def load_model():
|
| 40 |
+
"""
|
| 41 |
+
載入荷蘭語 ASR 模型和對應的處理器。
|
| 42 |
+
"""
|
| 43 |
+
global processor, model
|
| 44 |
+
if processor and model:
|
| 45 |
+
print(f"模型 '{MODEL_NAME}' 已載入,跳過。")
|
| 46 |
+
return True
|
| 47 |
+
|
| 48 |
+
print(f"正在準備 ASR 模型 '{MODEL_NAME}'...")
|
| 49 |
+
try:
|
| 50 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
| 51 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
| 52 |
+
model.to(DEVICE)
|
| 53 |
+
print(f"模型 '{MODEL_NAME}' 和處理器載入成功!")
|
| 54 |
+
return True
|
| 55 |
+
except Exception as e:
|
| 56 |
+
print(f"處理或載入模型 '{MODEL_NAME}' 時發生錯誤: {e}")
|
| 57 |
+
raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}")
|
| 58 |
+
|
| 59 |
+
# -----------------------------------------------------------------------
|
| 60 |
+
# 3.2. 通用 IPA 切分函數 (邏輯不變)
|
| 61 |
+
# -----------------------------------------------------------------------
|
| 62 |
+
def _tokenize_ipa(ipa_string: str) -> list:
|
| 63 |
+
"""
|
| 64 |
+
將 IPA 字串智能地切分為音素列表,可以正確處理任何語言的組合字符。
|
| 65 |
+
"""
|
| 66 |
+
phonemes = []
|
| 67 |
+
s = ipa_string.replace(' ', '')
|
| 68 |
+
i = 0
|
| 69 |
+
while i < len(s):
|
| 70 |
+
current_char = s[i]
|
| 71 |
+
i += 1
|
| 72 |
+
while i < len(s) and unicodedata.category(s[i]) == 'Mn':
|
| 73 |
+
current_char += s[i]
|
| 74 |
+
i += 1
|
| 75 |
+
phonemes.append(current_char)
|
| 76 |
+
return phonemes
|
| 77 |
+
|
| 78 |
+
# -----------------------------------------------------------------------
|
| 79 |
+
# 3.3. 核心分析函數 (邏輯不變)
|
| 80 |
+
# -----------------------------------------------------------------------
|
| 81 |
+
def analyze(audio_file_path: str, target_sentence: str) -> dict:
|
| 82 |
+
"""
|
| 83 |
+
接收音訊檔案路徑和目標荷蘭語句子,回傳詳細的發音分析字典。
|
| 84 |
+
"""
|
| 85 |
+
if not processor or not model:
|
| 86 |
+
raise RuntimeError("模型尚未載入。請確保在呼叫 analyze 之前已成功執行 load_model()。")
|
| 87 |
+
|
| 88 |
+
target_words_original = re.findall(r"[\w'-]+", target_sentence)
|
| 89 |
+
cleaned_sentence = " ".join(target_words_original)
|
| 90 |
+
|
| 91 |
+
target_ipa_by_word_str = phonemize(cleaned_sentence, language='nl', backend='espeak', with_stress=True, strip=True).split()
|
| 92 |
+
|
| 93 |
+
if len(target_words_original) != len(target_ipa_by_word_str):
|
| 94 |
+
print(f"警告: G2P 後單詞數量 ({len(target_ipa_by_word_str)}) 與原始單詞數量 ({len(target_words_original)}) 不匹配。")
|
| 95 |
+
min_len = min(len(target_words_original), len(target_ipa_by_word_str))
|
| 96 |
+
target_words_original = target_words_original[:min_len]
|
| 97 |
+
target_ipa_by_word_str = target_ipa_by_word_str[:min_len]
|
| 98 |
+
|
| 99 |
+
target_ipa_by_word = [
|
| 100 |
+
_tokenize_ipa(word.replace('ˈ', '').replace('ˌ', '').replace('ː', ''))
|
| 101 |
+
for word in target_ipa_by_word_str
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
speech, sample_rate = sf.read(audio_file_path)
|
| 106 |
+
if sample_rate != 16000:
|
| 107 |
+
speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000)
|
| 108 |
+
except Exception as e:
|
| 109 |
+
raise IOError(f"讀取或處理音訊時發生錯誤: {e}")
|
| 110 |
+
|
| 111 |
+
input_values = processor(speech, sampling_rate=16000, return_tensors="pt").input_values
|
| 112 |
+
input_values = input_values.to(DEVICE)
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
logits = model(input_values).logits
|
| 115 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 116 |
+
user_ipa_full = processor.decode(predicted_ids[0]).replace('|', '')
|
| 117 |
+
|
| 118 |
+
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
|
| 119 |
+
return _format_to_json_structure(word_alignments, target_sentence, target_words_original)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# =======================================================================
|
| 123 |
+
# 4. 對齊與格式化函數區 (語言無關,邏輯不變)
|
| 124 |
+
# =======================================================================
|
| 125 |
+
|
| 126 |
+
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
|
| 127 |
+
user_phonemes = _tokenize_ipa(user_phoneme_str)
|
| 128 |
+
target_phonemes_flat = [p for word in target_words_ipa_tokenized for p in word]
|
| 129 |
+
word_boundaries_indices = np.cumsum([len(word) for word in target_words_ipa_tokenized]) - 1
|
| 130 |
+
dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1))
|
| 131 |
+
for i in range(1, len(user_phonemes) + 1): dp[i][0] = i
|
| 132 |
+
for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j
|
| 133 |
+
for i in range(1, len(user_phonemes) + 1):
|
| 134 |
+
for j in range(1, len(target_phonemes_flat) + 1):
|
| 135 |
+
cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
|
| 136 |
+
dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + cost)
|
| 137 |
+
i, j = len(user_phonemes), len(target_phonemes_flat)
|
| 138 |
+
user_path, target_path = [], []
|
| 139 |
+
while i > 0 or j > 0:
|
| 140 |
+
cost = float('inf') if i == 0 or j == 0 else (0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1)
|
| 141 |
+
if i > 0 and j > 0 and dp[i][j] == dp[i-1][j-1] + cost:
|
| 142 |
+
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, target_phonemes_flat[j-1]); i -= 1; j -= 1
|
| 143 |
+
elif i > 0 and (j == 0 or dp[i][j] == dp[i-1][j] + 1):
|
| 144 |
+
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1
|
| 145 |
+
elif j > 0 and (i == 0 or dp[i][j] == dp[i][j-1] + 1):
|
| 146 |
+
user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1
|
| 147 |
+
else: break
|
| 148 |
+
alignments_by_word = []
|
| 149 |
+
word_start_idx_in_path = 0
|
| 150 |
+
target_phoneme_counter_in_path = 0
|
| 151 |
+
word_boundary_iter = iter(word_boundaries_indices)
|
| 152 |
+
current_word_boundary = next(word_boundary_iter, -1)
|
| 153 |
+
for path_idx, p in enumerate(target_path):
|
| 154 |
+
if p != '-':
|
| 155 |
+
if target_phoneme_counter_in_path == current_word_boundary:
|
| 156 |
+
alignments_by_word.append({
|
| 157 |
+
"target": target_path[word_start_idx_in_path : path_idx + 1],
|
| 158 |
+
"user": user_path[word_start_idx_in_path : path_idx + 1]
|
| 159 |
+
})
|
| 160 |
+
word_start_idx_in_path = path_idx + 1
|
| 161 |
+
current_word_boundary = next(word_boundary_iter, -1)
|
| 162 |
+
target_phoneme_counter_in_path += 1
|
| 163 |
+
return alignments_by_word
|
| 164 |
+
|
| 165 |
+
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
|
| 166 |
+
total_phonemes, total_errors, correct_words_count = 0, 0, 0
|
| 167 |
+
words_data = []
|
| 168 |
+
num_words_to_process = min(len(alignments), len(original_words))
|
| 169 |
+
for i in range(num_words_to_process):
|
| 170 |
+
alignment = alignments[i]
|
| 171 |
+
word_is_correct = True
|
| 172 |
+
phonemes_data = []
|
| 173 |
+
min_len = min(len(alignment['target']), len(alignment['user']))
|
| 174 |
+
for j in range(min_len):
|
| 175 |
+
target_phoneme, user_phoneme = alignment['target'][j], alignment['user'][j]
|
| 176 |
+
is_match = (user_phoneme == target_phoneme)
|
| 177 |
+
phonemes_data.append({"target": target_phoneme, "user": user_phoneme, "isMatch": is_match})
|
| 178 |
+
if not is_match:
|
| 179 |
+
word_is_correct = False
|
| 180 |
+
if not (user_phoneme == '-' and target_phoneme == '-'): total_errors += 1
|
| 181 |
+
if word_is_correct: correct_words_count += 1
|
| 182 |
+
words_data.append({"word": original_words[i], "isCorrect": word_is_correct, "phonemes": phonemes_data})
|
| 183 |
+
total_phonemes += sum(1 for p in alignment['target'] if p != '-')
|
| 184 |
+
if len(alignments) < len(original_words):
|
| 185 |
+
for i in range(len(alignments), len(original_words)):
|
| 186 |
+
missed_word_ipa_str = phonemize(original_words[i], language='nl', backend='espeak', strip=True).replace('ː', '')
|
| 187 |
+
missed_word_ipa = _tokenize_ipa(missed_word_ipa_str)
|
| 188 |
+
phonemes_data = []
|
| 189 |
+
for p_ipa in missed_word_ipa:
|
| 190 |
+
phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False})
|
| 191 |
+
total_errors += 1
|
| 192 |
+
total_phonemes += 1
|
| 193 |
+
words_data.append({"word": original_words[i], "isCorrect": False, "phonemes": phonemes_data})
|
| 194 |
+
total_words = len(original_words)
|
| 195 |
+
overall_score = (correct_words_count / total_words) * 100 if total_words > 0 else 0
|
| 196 |
+
phoneme_error_rate = (total_errors / total_phonemes) * 100 if total_phonemes > 0 else 0
|
| 197 |
+
return {
|
| 198 |
+
"sentence": sentence,
|
| 199 |
+
"analysisTimestampUTC": datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S (UTC)'),
|
| 200 |
+
"summary": {
|
| 201 |
+
"overallScore": round(overall_score, 1), "totalWords": total_words, "correctWords": correct_words_count,
|
| 202 |
+
"phonemeErrorRate": round(phoneme_error_rate, 2), "total_errors": total_errors, "total_target_phonemes": total_phonemes
|
| 203 |
+
},
|
| 204 |
+
"words": words_data
|
| 205 |
+
}
|