Spaces:
Runtime error
Runtime error
store locally
Browse files
utils.py
CHANGED
@@ -19,7 +19,6 @@ from optimum.onnxruntime import (
|
|
19 |
|
20 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
21 |
|
22 |
-
|
23 |
opt_configs = {
|
24 |
"O2": AutoOptimizationConfig.O2(),
|
25 |
"O3": AutoOptimizationConfig.O3(),
|
@@ -108,7 +107,8 @@ def load_hf_dataset(ds_name: str, ds_config: str = None, ds_split: str = "train"
|
|
108 |
if ds_config == "":
|
109 |
ds_config = None
|
110 |
|
111 |
-
ds = load_dataset(ds_name, ds_config, split=ds_split,
|
|
|
112 |
|
113 |
return ds
|
114 |
|
@@ -212,22 +212,34 @@ def tokenize(
|
|
212 |
)
|
213 |
|
214 |
|
215 |
-
def collate_fn(examples, tokenizer=None, padding=None,
|
216 |
try:
|
217 |
keys = examples[0].keys()
|
218 |
except KeyError:
|
219 |
print(examples)
|
220 |
else:
|
221 |
batch = {k: [] for k in examples[0].keys()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
|
224 |
-
for example in examples:
|
225 |
-
|
226 |
-
|
227 |
|
228 |
-
return {
|
229 |
-
|
230 |
-
}
|
231 |
|
232 |
@torch.inference_mode()
|
233 |
def batch_embed(
|
@@ -293,16 +305,16 @@ def batch_embed(
|
|
293 |
|
294 |
repo = init_git_repo(new_dataset_id)
|
295 |
|
296 |
-
ds = ds.map(
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
)
|
306 |
|
307 |
embeds = []
|
308 |
texts = []
|
@@ -327,10 +339,15 @@ def batch_embed(
|
|
327 |
ds,
|
328 |
batch_size=inference_bs,
|
329 |
shuffle=False,
|
330 |
-
num_workers=
|
331 |
pin_memory=True,
|
332 |
drop_last=False,
|
333 |
-
collate_fn=partial(
|
|
|
|
|
|
|
|
|
|
|
334 |
):
|
335 |
ids = batch["input_ids"].to(device)
|
336 |
mask = batch["attention_mask"].to(device)
|
@@ -354,7 +371,7 @@ def batch_embed(
|
|
354 |
|
355 |
# Periodically upload to the hub
|
356 |
if len(embeds) > upload_batch_size:
|
357 |
-
push_to_repo(
|
358 |
embeds = []
|
359 |
texts = []
|
360 |
last_count = current_count
|
@@ -372,7 +389,7 @@ def batch_embed(
|
|
372 |
|
373 |
# If there are any remaining embeddings, upload them
|
374 |
if len(embeds) > 0:
|
375 |
-
push_to_repo(
|
376 |
|
377 |
return current_count - num2skip, time_taken
|
378 |
|
@@ -472,27 +489,15 @@ def push_to_repo(
|
|
472 |
files = sorted(list(data_dir.glob("*.parquet")))
|
473 |
|
474 |
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
else:
|
486 |
-
|
487 |
-
api.upload_file(
|
488 |
-
path_or_fileobj=filepath,
|
489 |
-
path_in_repo=f"data/{filename}",
|
490 |
-
repo_id=repo_id,
|
491 |
-
repo_type="dataset",
|
492 |
-
run_as_future=True,
|
493 |
-
token=os.environ["HF_TOKEN"],
|
494 |
-
commit_message=f"Embedded examples {last_count} thru {current_count}",
|
495 |
-
)
|
496 |
|
497 |
|
498 |
# Delete old files
|
|
|
19 |
|
20 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
21 |
|
|
|
22 |
opt_configs = {
|
23 |
"O2": AutoOptimizationConfig.O2(),
|
24 |
"O3": AutoOptimizationConfig.O3(),
|
|
|
107 |
if ds_config == "":
|
108 |
ds_config = None
|
109 |
|
110 |
+
ds = load_dataset(ds_name, ds_config, split=ds_split, )
|
111 |
+
#streaming=True)
|
112 |
|
113 |
return ds
|
114 |
|
|
|
212 |
)
|
213 |
|
214 |
|
215 |
+
def collate_fn(examples, tokenizer=None, padding=None, column_name="text"):
|
216 |
try:
|
217 |
keys = examples[0].keys()
|
218 |
except KeyError:
|
219 |
print(examples)
|
220 |
else:
|
221 |
batch = {k: [] for k in examples[0].keys()}
|
222 |
+
|
223 |
+
tokenized = tokenizer(
|
224 |
+
[x[column_name] for x in examples],
|
225 |
+
truncation=True,
|
226 |
+
padding=padding,
|
227 |
+
max_length=512,
|
228 |
+
return_tensors="pt"
|
229 |
+
)
|
230 |
+
|
231 |
+
tokenized[column_name] = [x[column_name] for x in examples]
|
232 |
+
|
233 |
+
return tokenized
|
234 |
|
235 |
|
236 |
+
# for example in examples:
|
237 |
+
# for k, v in example.items():
|
238 |
+
# batch[k].append(v)
|
239 |
|
240 |
+
# return {
|
241 |
+
# k: torch.tensor(v, dtype=torch.long) if k in {"attention_mask", "input_ids"} else v for k, v in batch.items()
|
242 |
+
# }
|
243 |
|
244 |
@torch.inference_mode()
|
245 |
def batch_embed(
|
|
|
305 |
|
306 |
repo = init_git_repo(new_dataset_id)
|
307 |
|
308 |
+
# ds = ds.map(
|
309 |
+
# tokenize,
|
310 |
+
# batched=True,
|
311 |
+
# batch_size=map_batch_size,
|
312 |
+
# fn_kwargs={
|
313 |
+
# "tokenizer": tokenizer,
|
314 |
+
# "column_name": column_name,
|
315 |
+
# "padding": "max_length" if opt_level == "O4" else True,
|
316 |
+
# },
|
317 |
+
# )
|
318 |
|
319 |
embeds = []
|
320 |
texts = []
|
|
|
339 |
ds,
|
340 |
batch_size=inference_bs,
|
341 |
shuffle=False,
|
342 |
+
num_workers=2,
|
343 |
pin_memory=True,
|
344 |
drop_last=False,
|
345 |
+
collate_fn=partial(
|
346 |
+
collate_fn,
|
347 |
+
column_name=column_name,
|
348 |
+
tokenizer=tokenizer,
|
349 |
+
padding="max_length" if opt_level == "O4" else True
|
350 |
+
)
|
351 |
):
|
352 |
ids = batch["input_ids"].to(device)
|
353 |
mask = batch["attention_mask"].to(device)
|
|
|
371 |
|
372 |
# Periodically upload to the hub
|
373 |
if len(embeds) > upload_batch_size:
|
374 |
+
push_to_repo(new_dataset_id, last_count, current_count, embeds, texts, api)
|
375 |
embeds = []
|
376 |
texts = []
|
377 |
last_count = current_count
|
|
|
389 |
|
390 |
# If there are any remaining embeddings, upload them
|
391 |
if len(embeds) > 0:
|
392 |
+
push_to_repo(new_dataset_id, last_count, current_count, embeds, texts, api)
|
393 |
|
394 |
return current_count - num2skip, time_taken
|
395 |
|
|
|
489 |
files = sorted(list(data_dir.glob("*.parquet")))
|
490 |
|
491 |
|
492 |
+
api.upload_file(
|
493 |
+
path_or_fileobj=filepath,
|
494 |
+
path_in_repo=f"data/{filename}",
|
495 |
+
repo_id=repo_id,
|
496 |
+
repo_type="dataset",
|
497 |
+
run_as_future=True,
|
498 |
+
token=os.environ["HF_TOKEN"],
|
499 |
+
commit_message=f"Embedded examples {last_count} thru {current_count}",
|
500 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
|
502 |
|
503 |
# Delete old files
|