Spaces:
Runtime error
Runtime error
import gradio as gr | |
from data import download_dataset, tokenize_dataset, load_tokenized_dataset | |
from infer import get_model_and_tokenizer, batch_embed | |
# TODO: add instructor models | |
# "hkunlp/instructor-xl", | |
# "hkunlp/instructor-large", | |
# "hkunlp/instructor-base", | |
# model ids and hidden sizes | |
models_and_hidden_sizes = [ | |
("intfloat/e5-small-v2", 384), | |
("intfloat/e5-base-v2", 768), | |
("intfloat/e5-large-v2", 1024), | |
("intfloat/multilingual-e5-small", 384), | |
("intfloat/multilingual-e5-base", 768), | |
("intfloat/multilingual-e5-large", 1024), | |
("sentence-transformers/all-MiniLM-L6-v2", 384), | |
("sentence-transformers/all-MiniLM-L12-v2", 384), | |
("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", 384), | |
] | |
model_options = [ | |
f"{model_name} (hidden_size = {hidden_size})" | |
for model_name, hidden_size in models_and_hidden_sizes | |
] | |
opt2desc = { | |
"O2": "Most precise, slowest (O2: basic and extended general optimizations, transformers-specific fusions)", | |
"O3": "Less precise, faster (O3: O2 + gelu approx)", | |
"O4": "Least precise, fastest (O4: O3 + fp16/bf16)", | |
} | |
desc2opt = {v: k for k, v in opt2desc.items()} | |
optimization_options = list(opt2desc.values()) | |
def download_and_tokenize( | |
ds_name, | |
ds_config, | |
column_name, | |
ds_split, | |
model_choice, | |
opt_desc, | |
num2skip, | |
num2embed, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
num_samples = download_dataset(ds_name, ds_config, ds_split, num2skip, num2embed) | |
opt_level = desc2opt[opt_desc] | |
model_name = model_choice.split()[0] | |
tokenize_dataset( | |
ds_name=ds_name, | |
ds_config=ds_config, | |
model_name=model_name, | |
opt_level=opt_level, | |
column_name=column_name, | |
num2skip=num2skip, | |
num2embed=num2embed, | |
) | |
return f"Downloaded! It has {len(num_samples)} docs." | |
def embed( | |
ds_name, | |
ds_config, | |
column_name, | |
ds_split, | |
model_choice, | |
opt_desc, | |
new_dataset_id, | |
num2skip, | |
num2embed, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
ds = load_tokenized_dataset(ds_name, ds_config, ds_split) | |
opt_level = desc2opt[opt_desc] | |
model_name = model_choice.split()[0] | |
if progress is not None: | |
progress(0.2, "Downloading model and tokenizer...") | |
model, tokenizer = get_model_and_tokenizer(model_name, opt_level, progress) | |
doc_count, seconds_taken = batch_embed( | |
ds, | |
model, | |
tokenizer, | |
model_name=model_name, | |
column_name=column_name, | |
new_dataset_id=new_dataset_id, | |
opt_level=opt_level, | |
num2skip=num2skip, | |
num2embed=num2embed, | |
progress=progress, | |
) | |
return f"Embedded {doc_count} docs in {seconds_taken/60:.2f} minutes ({doc_count/seconds_taken:.1f} docs/sec)" | |
with gr.Blocks(title="Bulk embeddings") as demo: | |
gr.Markdown( | |
""" | |
# Bulk Embeddings | |
This Space allows you to embed a large dataset easily. For instance, this can easily create vectors for Wikipedia \ | |
articles -- taking about __ hours and costing approximately $__. | |
This utilizes state-of-the-art open-source embedding models, \ | |
and optimizes them for inference using Hugging Face [optimum](https://github.com/huggingface/optimum). There are various \ | |
levels of optimizations that can be applied - the quality of the embeddings will degrade as the optimizations increase. | |
Currently available options: O2/O3/O4 on T4/A10 GPUs using onnx runtime. | |
Future options: | |
- OpenVino for CPU inference | |
- TensorRT for GPU inference | |
- Quantized models | |
- Instructor models | |
- Text splitting options | |
- More control about which rows to embed (skip some, stop early) | |
- Dynamic padding | |
## Steps | |
1. Upload the dataset to the Hugging Face Hub. | |
2. Enter dataset details into the form below. | |
3. Choose a model. These are taken from the top of the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard). | |
4. Enter optimization level. See [here](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization#optimization-configuration) for details. | |
5. Choose a name for the new dataset. | |
6. Hit run! | |
### Note: | |
If you have short documents, O3 will be faster than O4. If you have long documents, O4 will be faster than O3. \ | |
O4 requires the tokenized documents to be padded to max length. | |
""" | |
) | |
with gr.Row(): | |
ds_name = gr.Textbox( | |
lines=1, | |
label="Dataset to load from Hugging Face Hub", | |
value="wikipedia", | |
) | |
ds_config = gr.Textbox( | |
lines=1, label="Dataset config (leave blank to use default)", value="20220301.en" | |
) | |
column_name = gr.Textbox(lines=1, label="Enter column to embed", value="text") | |
ds_split = gr.Dropdown( | |
choices=["train", "validation", "test"], | |
label="Dataset split", | |
value="train", | |
) | |
# TODO: idx column | |
# TODO: text splitting options | |
with gr.Row(): | |
model_choice = gr.Dropdown( | |
choices=model_options, label="Embedding model", value=model_options[0] | |
) | |
opt_desc = gr.Dropdown( | |
choices=optimization_options, | |
label="Optimization level", | |
value=optimization_options[0], | |
) | |
with gr.Row(): | |
new_dataset_id = gr.Textbox( | |
lines=1, | |
label="New dataset name, including username", | |
value="wiki-embeds", | |
) | |
num2skip = gr.Slider( | |
value=0, | |
minimum=0, | |
maximum=100_000_000, | |
step=1, | |
label="Number of rows to skip", | |
) | |
num2embed = gr.Slider( | |
value=30000, | |
minimum=-1, | |
maximum=100_000_000, | |
step=1, | |
label="Number of rows to embed (-1 = all)", | |
) | |
num2upload = gr.Slider( | |
value=10000, | |
minimum=1000, | |
maximum=100000, | |
step=1000, | |
label="Chunk size for uploading", | |
) | |
with gr.Row(): | |
download_btn = gr.Button(value="Download and tokenize dataset!") | |
embed_btn = gr.Button(value="Embed texts!") | |
last = gr.Textbox(value="") | |
download_btn.click( | |
fn=download, | |
inputs=[ | |
ds_name, | |
ds_config, | |
ds_split, | |
num2skip, | |
num2embed, | |
], | |
outputs=last, | |
) | |
embed_btn.click( | |
fn=embed, | |
inputs=[ | |
ds_name, | |
ds_config, | |
column_name, | |
ds_split, | |
model_choice, | |
opt_desc, | |
new_dataset_id, | |
num2skip, | |
num2embed, | |
], | |
outputs=last, | |
) | |
if __name__ == "__main__": | |
demo.queue(concurrency_count=20).launch(show_error=True, debug=True) |