Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| from sentence_transformers import SentenceTransformer, util | |
| import torch | |
| import gdown | |
| import os | |
| import pandas as pd | |
| # Download the file | |
| file_id = '1P3Nz6f3KG0m0kO_2pEfnVIhgP8Bvkl4v' | |
| url = f'https://drive.google.com/uc?id={file_id}' | |
| excel_file_path = os.path.join(os.path.expanduser("~"), 'medical_data.csv') | |
| gdown.download(url, excel_file_path, quiet=False) | |
| # Read the CSV file into a DataFrame using 'latin1' encoding | |
| try: | |
| medical_df = pd.read_csv(excel_file_path, encoding='utf-8') | |
| except UnicodeDecodeError: | |
| medical_df = pd.read_csv(excel_file_path, encoding='latin1') | |
| # TF-IDF Vectorization | |
| vectorizer = TfidfVectorizer(stop_words='english') | |
| X_tfidf = vectorizer.fit_transform(medical_df['Questions']) | |
| # Load pre-trained GPT-2 model and tokenizer | |
| model_name = "sshleifer/tiny-gpt2" | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
| model = GPT2LMHeadModel.from_pretrained(model_name) | |
| # Load pre-trained Sentence Transformer model | |
| sbert_model_name = "paraphrase-MiniLM-L6-v2" | |
| sbert_model = SentenceTransformer(sbert_model_name) | |
| # Function to answer medical questions using a combination of TF-IDF, LLM, and semantic similarity | |
| def get_medical_response(question, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df): | |
| # TF-IDF Cosine Similarity | |
| question_vector = vectorizer.transform([question]) | |
| tfidf_similarities = cosine_similarity(question_vector, X_tfidf).flatten() | |
| # Find the most similar question using semantic similarity | |
| question_embedding = sbert_model.encode(question, convert_to_tensor=True) | |
| similarities = util.pytorch_cos_sim(question_embedding, sbert_model.encode(medical_df['Questions'].tolist(), convert_to_tensor=True)).flatten() | |
| max_sim_index = similarities.argmax().item() | |
| # LLM response generation | |
| input_text = "Medical Bot: " + medical_df.iloc[max_sim_index]['Questions'] | |
| input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
| attention_mask = torch.ones(input_ids.shape, dtype=torch.long) | |
| pad_token_id = tokenizer.eos_token_id | |
| lm_output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, attention_mask=attention_mask, pad_token_id=pad_token_id) | |
| lm_generated_response = tokenizer.decode(lm_output[0], skip_special_tokens=True) | |
| # Compare similarities and choose the best response | |
| if tfidf_similarities.max() > 0.5: | |
| tfidf_index = tfidf_similarities.argmax() | |
| return medical_df.iloc[tfidf_index]['Answers'] | |
| else: | |
| return lm_generated_response | |
| # Streamlit app | |
| st.title("Medical Bot") | |
| user_input = st.text_input("You:") | |
| if user_input.lower() == "exit": | |
| st.stop() | |
| response = get_medical_response(user_input, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df) | |
| st.text_area("Bot's Response:", response) | |