mv_recom / src /data /metadata_dataset.py
HConley's picture
Upload 17 files
ac2467f
# Code to generate the working database, taking into consideration the findings from the Exploratory
# Data Analysis (EDA) in a Jupyter notebook.
import pandas as pd
import spacy
# Load NLP model
nlp = spacy.load("en_core_web_trf")
# Function to remove names of individuals from a text.
def remove_names(text):
""" Function to remove the names of people from a given text.
:param text: the text from which names will be removed.
:return: text without the names.
>>> remove_names('My name is John Connor, leader of the rebellion.')
'My name is , leader of the rebellion .'
"""
doc = nlp(text)
words_wo_names = [token.text for token in doc if token.ent_type_ != "PERSON"]
return " ".join(words_wo_names)
# Load raw data
movies = pd.read_csv('../../data/raw/0_inicial/movies.csv')
print(movies.columns)
# Drop not-used columns
movies.drop(['Unnamed: 0', 'Genre', 'Wiki Page', 'title'], inplace=True, axis=1)
# Removing names of plots and creating a new column in the DB
movies['plot_sin_nombres'] = movies['Plot'].apply(remove_names)
movies.drop('Plot', inplace=True, axis=1)
# Save
movies.to_csv('../../data/processed/movies_clean.csv')
if __name__ == '__main__':
__name__