Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,110 +2,101 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
-
from openvino.runtime import Core
|
| 6 |
from PIL import Image
|
| 7 |
-
from huggingface_hub import hf_hub_download
|
| 8 |
-
import os
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
|
| 17 |
-
|
| 18 |
-
device = "GPU"
|
| 19 |
-
elif "MYRIAD" in available_devices:
|
| 20 |
-
device = "MYRIAD"
|
| 21 |
-
elif "HDDL" in available_devices:
|
| 22 |
-
device = "HDDL"
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
model_filename = "stable-diffusion-v1-5.xml" # you may need to adjust based on actual file
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
print("📦 Model files downloaded")
|
| 34 |
-
|
| 35 |
-
# --------- Compile OpenVINO model ---------
|
| 36 |
-
compiled_model = core.compile_model(model_path_xml, device)
|
| 37 |
-
|
| 38 |
-
# Get input and output tensor names
|
| 39 |
-
input_layer = compiled_model.input(0)
|
| 40 |
-
output_layer = compiled_model.output(0)
|
| 41 |
-
|
| 42 |
-
# --------- Dummy NSFW filter ---------
|
| 43 |
-
def detect_nsfw(text: str):
|
| 44 |
banned = ["nude", "sex", "porn", "xxx", "nsfw"]
|
| 45 |
for word in banned:
|
| 46 |
-
if word in
|
| 47 |
-
return
|
| 48 |
-
return
|
| 49 |
|
| 50 |
-
# --------- Dummy Preprocessing (you should integrate tokenizer/text encoder for real use) ---------
|
| 51 |
-
def preprocess_input(prompt, width, height, seed):
|
| 52 |
-
# Just generate dummy latent vector
|
| 53 |
-
np.random.seed(seed)
|
| 54 |
-
return np.random.rand(1, 3, height, width).astype(np.float32)
|
| 55 |
-
|
| 56 |
-
# --------- Inference function ---------
|
| 57 |
def infer(
|
| 58 |
-
prompt,
|
| 59 |
-
negative_prompt,
|
| 60 |
-
seed,
|
| 61 |
-
randomize_seed,
|
| 62 |
-
width,
|
| 63 |
-
height,
|
| 64 |
-
guidance_scale,
|
| 65 |
-
num_inference_steps,
|
| 66 |
progress=gr.Progress(track_tqdm=True),
|
| 67 |
):
|
| 68 |
-
if detect_nsfw(prompt)
|
| 69 |
raise gr.Error("⚠️ Prompt contains NSFW content. Please use a safe prompt.")
|
| 70 |
|
| 71 |
if randomize_seed:
|
| 72 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
| 73 |
|
|
|
|
| 74 |
width = (width // 8) * 8
|
| 75 |
height = (height // 8) * 8
|
| 76 |
|
| 77 |
-
|
| 78 |
-
input_data = preprocess_input(prompt, width, height, seed)
|
| 79 |
-
|
| 80 |
-
# Run OpenVINO inference
|
| 81 |
-
result = compiled_model([input_data])[output_layer]
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
-
#
|
| 91 |
examples = [
|
| 92 |
-
"A
|
| 93 |
-
"
|
| 94 |
-
"
|
| 95 |
]
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
with gr.Column(elem_id="col-container"):
|
| 99 |
-
gr.Markdown("##
|
| 100 |
|
| 101 |
with gr.Row():
|
| 102 |
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt", show_label=False)
|
| 103 |
run_button = gr.Button("Generate", variant="primary")
|
| 104 |
|
| 105 |
-
result = gr.Image(label="
|
| 106 |
|
| 107 |
with gr.Accordion("Advanced Settings", open=False):
|
| 108 |
-
negative_prompt = gr.Text(label="Negative
|
| 109 |
|
| 110 |
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=0)
|
| 111 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
import torch
|
|
|
|
| 5 |
from PIL import Image
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 8 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 9 |
+
from optimum.intel import OVStableDiffusionPipeline
|
| 10 |
|
| 11 |
+
# Nếu muốn đảm bảo reproducibility
|
| 12 |
+
torch.manual_seed(0)
|
| 13 |
+
np.random.seed(0)
|
| 14 |
+
random.seed(0)
|
| 15 |
|
| 16 |
+
print("🔧 Loading OpenVINO pipeline: HARRY07979/sd-v1-5-openvino")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Load the full pipeline (tokenizer, text encoder, unet, vae) từ repo
|
| 19 |
+
pipeline = OVStableDiffusionPipeline.from_pretrained(
|
| 20 |
+
"HARRY07979/sd-v1-5-openvino",
|
| 21 |
+
# nếu model đã convert sẵn IR nên không cần export
|
| 22 |
+
safety_checker=None, # nếu muốn bỏ kiểm tra NSFW hoặc model không có
|
| 23 |
+
feature_extractor=None,
|
| 24 |
+
torch_dtype=torch.float32, # nhớ kiểm tra model hỗ trợ dtype nào
|
| 25 |
+
)
|
| 26 |
|
| 27 |
+
# Chọn thiết bị phù hợp (CPU, GPU, MYRIAD...) — Optimum Intel sẽ tự chọn nếu có hỗ trợ
|
| 28 |
+
pipeline.to("cpu")
|
|
|
|
| 29 |
|
| 30 |
+
# Dummy NSFW detection nếu muốn (bên trong có thể dùng safety_checker của pipeline nếu có)
|
| 31 |
+
def detect_nsfw(prompt: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
banned = ["nude", "sex", "porn", "xxx", "nsfw"]
|
| 33 |
for word in banned:
|
| 34 |
+
if word.lower() in prompt.lower():
|
| 35 |
+
return True
|
| 36 |
+
return False
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def infer(
|
| 39 |
+
prompt: str,
|
| 40 |
+
negative_prompt: str,
|
| 41 |
+
seed: int,
|
| 42 |
+
randomize_seed: bool,
|
| 43 |
+
width: int,
|
| 44 |
+
height: int,
|
| 45 |
+
guidance_scale: float,
|
| 46 |
+
num_inference_steps: int,
|
| 47 |
progress=gr.Progress(track_tqdm=True),
|
| 48 |
):
|
| 49 |
+
if detect_nsfw(prompt):
|
| 50 |
raise gr.Error("⚠️ Prompt contains NSFW content. Please use a safe prompt.")
|
| 51 |
|
| 52 |
if randomize_seed:
|
| 53 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
| 54 |
|
| 55 |
+
# Ensure width/height divisible by 8
|
| 56 |
width = (width // 8) * 8
|
| 57 |
height = (height // 8) * 8
|
| 58 |
|
| 59 |
+
generator = torch.Generator("cpu").manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
result = pipeline(
|
| 62 |
+
prompt=prompt,
|
| 63 |
+
negative_prompt=negative_prompt,
|
| 64 |
+
guidance_scale=guidance_scale,
|
| 65 |
+
num_inference_steps=num_inference_steps,
|
| 66 |
+
width=width,
|
| 67 |
+
height=height,
|
| 68 |
+
generator=generator,
|
| 69 |
+
)
|
| 70 |
|
| 71 |
+
image = result.images[0]
|
| 72 |
+
return image, seed
|
| 73 |
|
| 74 |
+
# Gradio UI
|
| 75 |
examples = [
|
| 76 |
+
"A fantasy landscape, vivid colors, sunset light",
|
| 77 |
+
"Portrait of a cyberpunk robot girl, neon lighting",
|
| 78 |
+
"An epic sci-fi scene: spaceship battle in space",
|
| 79 |
]
|
| 80 |
|
| 81 |
+
css = """
|
| 82 |
+
#col-container {
|
| 83 |
+
margin: 0 auto;
|
| 84 |
+
max-width: 640px;
|
| 85 |
+
}
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
with gr.Blocks(css=css) as demo:
|
| 89 |
with gr.Column(elem_id="col-container"):
|
| 90 |
+
gr.Markdown("## Stable Diffusion v1.5 OpenVINO — Full Pipeline (Tokeniser + UNet + VAE)")
|
| 91 |
|
| 92 |
with gr.Row():
|
| 93 |
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt", show_label=False)
|
| 94 |
run_button = gr.Button("Generate", variant="primary")
|
| 95 |
|
| 96 |
+
result = gr.Image(label="Generated Image", show_label=False)
|
| 97 |
|
| 98 |
with gr.Accordion("Advanced Settings", open=False):
|
| 99 |
+
negative_prompt = gr.Text(label="Negative prompt", placeholder="Enter negative prompt")
|
| 100 |
|
| 101 |
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=0)
|
| 102 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|