Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import os
|
|
| 2 |
import re
|
| 3 |
import json
|
| 4 |
import gradio as gr
|
| 5 |
-
from typing import List, Dict, Any
|
| 6 |
import requests
|
| 7 |
from datetime import datetime
|
| 8 |
import ast
|
|
@@ -133,42 +133,76 @@ def download_and_load_model(progress=gr.Progress()):
|
|
| 133 |
def get_tool_descriptions() -> str:
|
| 134 |
return "\n".join([f"- {tool.name}: {tool.description}" for tool in TOOLS])
|
| 135 |
|
| 136 |
-
THINK_ONLY_PROMPT = """You are
|
| 137 |
|
| 138 |
-
|
| 139 |
-
Thought:
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
Question: {question}
|
| 143 |
|
| 144 |
-
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
ACT_ONLY_PROMPT = """You are
|
| 147 |
|
| 148 |
Available tools:
|
| 149 |
{tools}
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
Format:
|
| 152 |
Action: tool_name
|
| 153 |
-
Action Input:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
Question: {question}
|
| 156 |
|
| 157 |
Action:"""
|
| 158 |
|
| 159 |
-
REACT_PROMPT = """You are
|
| 160 |
|
| 161 |
Available tools:
|
| 162 |
{tools}
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
Action
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
Thought:
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
Question: {question}
|
| 174 |
|
|
@@ -211,90 +245,115 @@ def call_llm(prompt: str, max_tokens: int = 500) -> str:
|
|
| 211 |
except Exception as e:
|
| 212 |
return f"Error during generation: {str(e)}"
|
| 213 |
|
| 214 |
-
def think_only_mode(question: str) -> str:
|
| 215 |
if not model_loaded:
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
-
output = "**Mode: Think-Only**\n\n"
|
| 219 |
response = call_llm(THINK_ONLY_PROMPT.format(question=question), max_tokens=800)
|
| 220 |
|
| 221 |
if response.startswith("Error"):
|
| 222 |
-
|
|
|
|
| 223 |
|
| 224 |
for line in response.split('\n'):
|
| 225 |
if line.strip():
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
-
|
| 229 |
|
| 230 |
-
def act_only_mode(question: str, max_iterations: int = 5) -> str:
|
| 231 |
if not model_loaded:
|
| 232 |
-
|
|
|
|
| 233 |
|
| 234 |
-
|
| 235 |
conversation = ACT_ONLY_PROMPT.format(question=question, tools=get_tool_descriptions())
|
| 236 |
|
| 237 |
for iteration in range(max_iterations):
|
|
|
|
|
|
|
| 238 |
response = call_llm(conversation, max_tokens=300)
|
| 239 |
|
| 240 |
if response.startswith("Error"):
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
output += f"**Iteration {iteration + 1}:**\n{response}\n\n"
|
| 244 |
|
| 245 |
if 'Answer:' in response:
|
| 246 |
match = re.search(r'Answer:\s*(.+)', response, re.IGNORECASE | re.DOTALL)
|
| 247 |
if match:
|
| 248 |
-
|
| 249 |
break
|
| 250 |
|
| 251 |
action_name, action_input = parse_action(response)
|
| 252 |
if action_name and action_input:
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
| 254 |
observation = call_tool(action_name, action_input)
|
| 255 |
-
|
|
|
|
| 256 |
conversation += f"\n{response}\nObservation: {observation}\n\n"
|
| 257 |
else:
|
| 258 |
-
|
| 259 |
break
|
| 260 |
|
| 261 |
-
|
| 262 |
|
| 263 |
-
def react_mode(question: str, max_iterations: int = 5) -> str:
|
| 264 |
if not model_loaded:
|
| 265 |
-
|
|
|
|
| 266 |
|
| 267 |
-
|
| 268 |
conversation = REACT_PROMPT.format(question=question, tools=get_tool_descriptions())
|
| 269 |
|
| 270 |
for iteration in range(max_iterations):
|
|
|
|
|
|
|
| 271 |
response = call_llm(conversation, max_tokens=400)
|
| 272 |
|
| 273 |
if response.startswith("Error"):
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
output += f"**Iteration {iteration + 1}:**\n"
|
| 277 |
|
|
|
|
| 278 |
for thought in re.findall(r'Thought:\s*(.+?)(?=\n(?:Action:|Answer:|$))', response, re.IGNORECASE | re.DOTALL):
|
| 279 |
-
|
| 280 |
|
|
|
|
| 281 |
if 'Answer:' in response:
|
| 282 |
match = re.search(r'Answer:\s*(.+)', response, re.IGNORECASE | re.DOTALL)
|
| 283 |
if match:
|
| 284 |
-
|
| 285 |
break
|
| 286 |
|
|
|
|
| 287 |
action_name, action_input = parse_action(response)
|
| 288 |
if action_name and action_input:
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
| 290 |
observation = call_tool(action_name, action_input)
|
| 291 |
-
|
|
|
|
| 292 |
conversation += f"\n{response}\nObservation: {observation}\n\nThought:"
|
| 293 |
else:
|
| 294 |
-
|
|
|
|
| 295 |
break
|
| 296 |
|
| 297 |
-
|
| 298 |
|
| 299 |
EXAMPLES = [
|
| 300 |
"What is 25 * 47?",
|
|
@@ -304,15 +363,31 @@ EXAMPLES = [
|
|
| 304 |
]
|
| 305 |
|
| 306 |
def run_comparison(question: str, mode: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
if mode == "Think-Only":
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
elif mode == "Act-Only":
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
elif mode == "ReAct":
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
with gr.Blocks(title="LLM Reasoning Modes") as demo:
|
| 318 |
gr.Markdown("# LLM Reasoning Modes Comparison\n\n**Model:** openai/gpt-oss-20b\n\n**Tools:** DuckDuckGo | Wikipedia | Weather | Calculator | Python")
|
|
@@ -324,7 +399,7 @@ with gr.Blocks(title="LLM Reasoning Modes") as demo:
|
|
| 324 |
with gr.Row():
|
| 325 |
with gr.Column(scale=3):
|
| 326 |
question_input = gr.Textbox(label="Question", lines=3)
|
| 327 |
-
mode_dropdown = gr.Dropdown(choices=["Think-Only", "Act-Only", "ReAct"
|
| 328 |
submit_btn = gr.Button("Run", variant="primary", size="lg")
|
| 329 |
with gr.Column(scale=1):
|
| 330 |
gr.Markdown("**Examples**")
|
|
|
|
| 2 |
import re
|
| 3 |
import json
|
| 4 |
import gradio as gr
|
| 5 |
+
from typing import List, Dict, Any, Generator
|
| 6 |
import requests
|
| 7 |
from datetime import datetime
|
| 8 |
import ast
|
|
|
|
| 133 |
def get_tool_descriptions() -> str:
|
| 134 |
return "\n".join([f"- {tool.name}: {tool.description}" for tool in TOOLS])
|
| 135 |
|
| 136 |
+
THINK_ONLY_PROMPT = """You are an expert problem solver. Use your knowledge and reasoning to answer questions.
|
| 137 |
|
| 138 |
+
You must show your complete reasoning process using this format:
|
| 139 |
+
Thought: [Explain what you're thinking and why]
|
| 140 |
+
Thought: [Continue your reasoning, breaking down the problem]
|
| 141 |
+
Thought: [Build toward the solution step by step]
|
| 142 |
+
Answer: [Your final, complete answer]
|
| 143 |
+
|
| 144 |
+
Important:
|
| 145 |
+
- Show multiple thought steps
|
| 146 |
+
- Break down complex problems
|
| 147 |
+
- Explain your reasoning clearly
|
| 148 |
+
- Only provide the Answer when you're certain
|
| 149 |
|
| 150 |
Question: {question}
|
| 151 |
|
| 152 |
+
Let me think through this step by step:
|
| 153 |
+
|
| 154 |
+
Thought:"""
|
| 155 |
|
| 156 |
+
ACT_ONLY_PROMPT = """You are an AI agent with access to external tools. You MUST use tools to find information.
|
| 157 |
|
| 158 |
Available tools:
|
| 159 |
{tools}
|
| 160 |
|
| 161 |
+
You MUST respond ONLY with actions - no thinking out loud:
|
| 162 |
+
Action: [exact tool name]
|
| 163 |
+
Action Input: [specific input for the tool]
|
| 164 |
+
|
| 165 |
+
After receiving the Observation, you can:
|
| 166 |
+
- Call another tool if you need more information
|
| 167 |
+
- Provide the final Answer when you have enough information
|
| 168 |
+
|
| 169 |
Format:
|
| 170 |
Action: tool_name
|
| 171 |
+
Action Input: input_string
|
| 172 |
+
|
| 173 |
+
Then after observation:
|
| 174 |
+
Action: another_tool
|
| 175 |
+
Action Input: another_input
|
| 176 |
+
|
| 177 |
+
OR
|
| 178 |
+
Answer: [final answer based on observations]
|
| 179 |
|
| 180 |
Question: {question}
|
| 181 |
|
| 182 |
Action:"""
|
| 183 |
|
| 184 |
+
REACT_PROMPT = """You are an expert AI agent that combines reasoning with tool usage (ReAct paradigm).
|
| 185 |
|
| 186 |
Available tools:
|
| 187 |
{tools}
|
| 188 |
|
| 189 |
+
You MUST alternate between thinking and acting:
|
| 190 |
+
|
| 191 |
+
1. Thought: [Reason about what information you need and which tool to use]
|
| 192 |
+
2. Action: [exact tool name]
|
| 193 |
+
3. Action Input: [specific input]
|
| 194 |
+
4. Observation: [tool result - will be provided to you]
|
| 195 |
+
5. Thought: [Analyze the observation and decide next steps]
|
| 196 |
+
6. Repeat 2-5 until you have enough information
|
| 197 |
+
7. Thought: [Final reasoning with all gathered information]
|
| 198 |
+
8. Answer: [Complete final answer]
|
| 199 |
+
|
| 200 |
+
Rules:
|
| 201 |
+
- ALWAYS start with a Thought explaining your strategy
|
| 202 |
+
- After each Observation, think about what you learned
|
| 203 |
+
- Use multiple tools if needed
|
| 204 |
+
- Only give Answer when you have sufficient information
|
| 205 |
+
- Be specific in your Action Inputs
|
| 206 |
|
| 207 |
Question: {question}
|
| 208 |
|
|
|
|
| 245 |
except Exception as e:
|
| 246 |
return f"Error during generation: {str(e)}"
|
| 247 |
|
| 248 |
+
def think_only_mode(question: str) -> Generator[str, None, None]:
|
| 249 |
if not model_loaded:
|
| 250 |
+
yield "β **Error: Model not loaded. Click 'Download & Load Model' first.**\n\n"
|
| 251 |
+
return
|
| 252 |
+
|
| 253 |
+
yield "π§ **Mode: Think-Only (Chain-of-Thought)**\n\n"
|
| 254 |
+
yield "π Generating reasoning steps...\n\n"
|
| 255 |
|
|
|
|
| 256 |
response = call_llm(THINK_ONLY_PROMPT.format(question=question), max_tokens=800)
|
| 257 |
|
| 258 |
if response.startswith("Error"):
|
| 259 |
+
yield f"β {response}\n\n"
|
| 260 |
+
return
|
| 261 |
|
| 262 |
for line in response.split('\n'):
|
| 263 |
if line.strip():
|
| 264 |
+
if line.strip().startswith('Thought:'):
|
| 265 |
+
yield f"π **{line.strip()}**\n\n"
|
| 266 |
+
elif line.strip().startswith('Answer:'):
|
| 267 |
+
yield f"β
**{line.strip()}**\n\n"
|
| 268 |
+
else:
|
| 269 |
+
yield f"{line}\n\n"
|
| 270 |
|
| 271 |
+
yield "\n---\nβ **Completed**\n"
|
| 272 |
|
| 273 |
+
def act_only_mode(question: str, max_iterations: int = 5) -> Generator[str, None, None]:
|
| 274 |
if not model_loaded:
|
| 275 |
+
yield "β **Error: Model not loaded. Click 'Download & Load Model' first.**\n\n"
|
| 276 |
+
return
|
| 277 |
|
| 278 |
+
yield "π§ **Mode: Act-Only (Tool Use Only)**\n\n"
|
| 279 |
conversation = ACT_ONLY_PROMPT.format(question=question, tools=get_tool_descriptions())
|
| 280 |
|
| 281 |
for iteration in range(max_iterations):
|
| 282 |
+
yield f"π **Iteration {iteration + 1}**\n\n"
|
| 283 |
+
|
| 284 |
response = call_llm(conversation, max_tokens=300)
|
| 285 |
|
| 286 |
if response.startswith("Error"):
|
| 287 |
+
yield f"β {response}\n\n"
|
| 288 |
+
return
|
|
|
|
| 289 |
|
| 290 |
if 'Answer:' in response:
|
| 291 |
match = re.search(r'Answer:\s*(.+)', response, re.IGNORECASE | re.DOTALL)
|
| 292 |
if match:
|
| 293 |
+
yield f"β
**Answer:** {match.group(1).strip()}\n\n"
|
| 294 |
break
|
| 295 |
|
| 296 |
action_name, action_input = parse_action(response)
|
| 297 |
if action_name and action_input:
|
| 298 |
+
yield f"π§ **Action:** `{action_name}`\n"
|
| 299 |
+
yield f"π **Action Input:** {action_input}\n\n"
|
| 300 |
+
|
| 301 |
+
yield f"β³ Executing tool...\n\n"
|
| 302 |
observation = call_tool(action_name, action_input)
|
| 303 |
+
|
| 304 |
+
yield f"ποΈ **Observation:** {observation}\n\n"
|
| 305 |
conversation += f"\n{response}\nObservation: {observation}\n\n"
|
| 306 |
else:
|
| 307 |
+
yield f"β οΈ No valid action found. Response: {response}\n\n"
|
| 308 |
break
|
| 309 |
|
| 310 |
+
yield "\n---\nβ **Completed**\n"
|
| 311 |
|
| 312 |
+
def react_mode(question: str, max_iterations: int = 5) -> Generator[str, None, None]:
|
| 313 |
if not model_loaded:
|
| 314 |
+
yield "β **Error: Model not loaded. Click 'Download & Load Model' first.**\n\n"
|
| 315 |
+
return
|
| 316 |
|
| 317 |
+
yield "π€ **Mode: ReAct (Reasoning + Acting)**\n\n"
|
| 318 |
conversation = REACT_PROMPT.format(question=question, tools=get_tool_descriptions())
|
| 319 |
|
| 320 |
for iteration in range(max_iterations):
|
| 321 |
+
yield f"π **Step {iteration + 1}**\n\n"
|
| 322 |
+
|
| 323 |
response = call_llm(conversation, max_tokens=400)
|
| 324 |
|
| 325 |
if response.startswith("Error"):
|
| 326 |
+
yield f"β {response}\n\n"
|
| 327 |
+
return
|
|
|
|
| 328 |
|
| 329 |
+
# Extract and display thoughts
|
| 330 |
for thought in re.findall(r'Thought:\s*(.+?)(?=\n(?:Action:|Answer:|$))', response, re.IGNORECASE | re.DOTALL):
|
| 331 |
+
yield f"π **Thought:** {thought.strip()}\n\n"
|
| 332 |
|
| 333 |
+
# Check for final answer
|
| 334 |
if 'Answer:' in response:
|
| 335 |
match = re.search(r'Answer:\s*(.+)', response, re.IGNORECASE | re.DOTALL)
|
| 336 |
if match:
|
| 337 |
+
yield f"β
**Answer:** {match.group(1).strip()}\n\n"
|
| 338 |
break
|
| 339 |
|
| 340 |
+
# Parse and execute action
|
| 341 |
action_name, action_input = parse_action(response)
|
| 342 |
if action_name and action_input:
|
| 343 |
+
yield f"π§ **Action:** `{action_name}`\n"
|
| 344 |
+
yield f"π **Action Input:** {action_input}\n\n"
|
| 345 |
+
|
| 346 |
+
yield f"β³ Executing tool...\n\n"
|
| 347 |
observation = call_tool(action_name, action_input)
|
| 348 |
+
|
| 349 |
+
yield f"ποΈ **Observation:** {observation}\n\n"
|
| 350 |
conversation += f"\n{response}\nObservation: {observation}\n\nThought:"
|
| 351 |
else:
|
| 352 |
+
if 'Answer:' not in response:
|
| 353 |
+
yield f"β οΈ No action found. Response: {response}\n\n"
|
| 354 |
break
|
| 355 |
|
| 356 |
+
yield "\n---\nβ **Completed**\n"
|
| 357 |
|
| 358 |
EXAMPLES = [
|
| 359 |
"What is 25 * 47?",
|
|
|
|
| 363 |
]
|
| 364 |
|
| 365 |
def run_comparison(question: str, mode: str):
|
| 366 |
+
"""Run selected mode with real-time streaming."""
|
| 367 |
+
if not question.strip():
|
| 368 |
+
yield "Please enter a question.", "", ""
|
| 369 |
+
return
|
| 370 |
+
|
| 371 |
if mode == "Think-Only":
|
| 372 |
+
think_out = ""
|
| 373 |
+
for chunk in think_only_mode(question):
|
| 374 |
+
think_out += chunk
|
| 375 |
+
yield think_out, "", ""
|
| 376 |
+
|
| 377 |
elif mode == "Act-Only":
|
| 378 |
+
act_out = ""
|
| 379 |
+
for chunk in act_only_mode(question):
|
| 380 |
+
act_out += chunk
|
| 381 |
+
yield "", act_out, ""
|
| 382 |
+
|
| 383 |
elif mode == "ReAct":
|
| 384 |
+
react_out = ""
|
| 385 |
+
for chunk in react_mode(question):
|
| 386 |
+
react_out += chunk
|
| 387 |
+
yield "", "", react_out
|
| 388 |
+
|
| 389 |
+
else:
|
| 390 |
+
yield "Invalid mode selected.", "", ""
|
| 391 |
|
| 392 |
with gr.Blocks(title="LLM Reasoning Modes") as demo:
|
| 393 |
gr.Markdown("# LLM Reasoning Modes Comparison\n\n**Model:** openai/gpt-oss-20b\n\n**Tools:** DuckDuckGo | Wikipedia | Weather | Calculator | Python")
|
|
|
|
| 399 |
with gr.Row():
|
| 400 |
with gr.Column(scale=3):
|
| 401 |
question_input = gr.Textbox(label="Question", lines=3)
|
| 402 |
+
mode_dropdown = gr.Dropdown(choices=["Think-Only", "Act-Only", "ReAct"], value="ReAct", label="Mode")
|
| 403 |
submit_btn = gr.Button("Run", variant="primary", size="lg")
|
| 404 |
with gr.Column(scale=1):
|
| 405 |
gr.Markdown("**Examples**")
|