|  | import torch | 
					
						
						|  | import comfy.utils | 
					
						
						|  | from enum import Enum | 
					
						
						|  |  | 
					
						
						|  | def resize_mask(mask, shape): | 
					
						
						|  | return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1) | 
					
						
						|  |  | 
					
						
						|  | class PorterDuffMode(Enum): | 
					
						
						|  | ADD = 0 | 
					
						
						|  | CLEAR = 1 | 
					
						
						|  | DARKEN = 2 | 
					
						
						|  | DST = 3 | 
					
						
						|  | DST_ATOP = 4 | 
					
						
						|  | DST_IN = 5 | 
					
						
						|  | DST_OUT = 6 | 
					
						
						|  | DST_OVER = 7 | 
					
						
						|  | LIGHTEN = 8 | 
					
						
						|  | MULTIPLY = 9 | 
					
						
						|  | OVERLAY = 10 | 
					
						
						|  | SCREEN = 11 | 
					
						
						|  | SRC = 12 | 
					
						
						|  | SRC_ATOP = 13 | 
					
						
						|  | SRC_IN = 14 | 
					
						
						|  | SRC_OUT = 15 | 
					
						
						|  | SRC_OVER = 16 | 
					
						
						|  | XOR = 17 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode): | 
					
						
						|  |  | 
					
						
						|  | src_alpha = 1 - src_alpha | 
					
						
						|  | dst_alpha = 1 - dst_alpha | 
					
						
						|  |  | 
					
						
						|  | src_image = src_image * src_alpha | 
					
						
						|  | dst_image = dst_image * dst_alpha | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if mode == PorterDuffMode.ADD: | 
					
						
						|  | out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1) | 
					
						
						|  | out_image = torch.clamp(src_image + dst_image, 0, 1) | 
					
						
						|  | elif mode == PorterDuffMode.CLEAR: | 
					
						
						|  | out_alpha = torch.zeros_like(dst_alpha) | 
					
						
						|  | out_image = torch.zeros_like(dst_image) | 
					
						
						|  | elif mode == PorterDuffMode.DARKEN: | 
					
						
						|  | out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha | 
					
						
						|  | out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image) | 
					
						
						|  | elif mode == PorterDuffMode.DST: | 
					
						
						|  | out_alpha = dst_alpha | 
					
						
						|  | out_image = dst_image | 
					
						
						|  | elif mode == PorterDuffMode.DST_ATOP: | 
					
						
						|  | out_alpha = src_alpha | 
					
						
						|  | out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image | 
					
						
						|  | elif mode == PorterDuffMode.DST_IN: | 
					
						
						|  | out_alpha = src_alpha * dst_alpha | 
					
						
						|  | out_image = dst_image * src_alpha | 
					
						
						|  | elif mode == PorterDuffMode.DST_OUT: | 
					
						
						|  | out_alpha = (1 - src_alpha) * dst_alpha | 
					
						
						|  | out_image = (1 - src_alpha) * dst_image | 
					
						
						|  | elif mode == PorterDuffMode.DST_OVER: | 
					
						
						|  | out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha | 
					
						
						|  | out_image = dst_image + (1 - dst_alpha) * src_image | 
					
						
						|  | elif mode == PorterDuffMode.LIGHTEN: | 
					
						
						|  | out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha | 
					
						
						|  | out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image) | 
					
						
						|  | elif mode == PorterDuffMode.MULTIPLY: | 
					
						
						|  | out_alpha = src_alpha * dst_alpha | 
					
						
						|  | out_image = src_image * dst_image | 
					
						
						|  | elif mode == PorterDuffMode.OVERLAY: | 
					
						
						|  | out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha | 
					
						
						|  | out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image, | 
					
						
						|  | src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image)) | 
					
						
						|  | elif mode == PorterDuffMode.SCREEN: | 
					
						
						|  | out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha | 
					
						
						|  | out_image = src_image + dst_image - src_image * dst_image | 
					
						
						|  | elif mode == PorterDuffMode.SRC: | 
					
						
						|  | out_alpha = src_alpha | 
					
						
						|  | out_image = src_image | 
					
						
						|  | elif mode == PorterDuffMode.SRC_ATOP: | 
					
						
						|  | out_alpha = dst_alpha | 
					
						
						|  | out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image | 
					
						
						|  | elif mode == PorterDuffMode.SRC_IN: | 
					
						
						|  | out_alpha = src_alpha * dst_alpha | 
					
						
						|  | out_image = src_image * dst_alpha | 
					
						
						|  | elif mode == PorterDuffMode.SRC_OUT: | 
					
						
						|  | out_alpha = (1 - dst_alpha) * src_alpha | 
					
						
						|  | out_image = (1 - dst_alpha) * src_image | 
					
						
						|  | elif mode == PorterDuffMode.SRC_OVER: | 
					
						
						|  | out_alpha = src_alpha + (1 - src_alpha) * dst_alpha | 
					
						
						|  | out_image = src_image + (1 - src_alpha) * dst_image | 
					
						
						|  | elif mode == PorterDuffMode.XOR: | 
					
						
						|  | out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha | 
					
						
						|  | out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image | 
					
						
						|  | else: | 
					
						
						|  | return None, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out_image = torch.where(out_alpha > 1e-5, out_image / out_alpha, torch.zeros_like(out_image)) | 
					
						
						|  | out_image = torch.clamp(out_image, 0, 1) | 
					
						
						|  |  | 
					
						
						|  | out_alpha = 1 - out_alpha | 
					
						
						|  | return out_image, out_alpha | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PorterDuffImageComposite: | 
					
						
						|  | @classmethod | 
					
						
						|  | def INPUT_TYPES(s): | 
					
						
						|  | return { | 
					
						
						|  | "required": { | 
					
						
						|  | "source": ("IMAGE",), | 
					
						
						|  | "source_alpha": ("MASK",), | 
					
						
						|  | "destination": ("IMAGE",), | 
					
						
						|  | "destination_alpha": ("MASK",), | 
					
						
						|  | "mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}), | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | RETURN_TYPES = ("IMAGE", "MASK") | 
					
						
						|  | FUNCTION = "composite" | 
					
						
						|  | CATEGORY = "mask/compositing" | 
					
						
						|  |  | 
					
						
						|  | def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode): | 
					
						
						|  | batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha)) | 
					
						
						|  | out_images = [] | 
					
						
						|  | out_alphas = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(batch_size): | 
					
						
						|  | src_image = source[i] | 
					
						
						|  | dst_image = destination[i] | 
					
						
						|  |  | 
					
						
						|  | assert src_image.shape[2] == dst_image.shape[2] | 
					
						
						|  |  | 
					
						
						|  | src_alpha = source_alpha[i].unsqueeze(2) | 
					
						
						|  | dst_alpha = destination_alpha[i].unsqueeze(2) | 
					
						
						|  |  | 
					
						
						|  | if dst_alpha.shape[:2] != dst_image.shape[:2]: | 
					
						
						|  | upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2) | 
					
						
						|  | upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') | 
					
						
						|  | dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) | 
					
						
						|  | if src_image.shape != dst_image.shape: | 
					
						
						|  | upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2) | 
					
						
						|  | upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') | 
					
						
						|  | src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0) | 
					
						
						|  | if src_alpha.shape != dst_alpha.shape: | 
					
						
						|  | upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2) | 
					
						
						|  | upscale_output = comfy.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center') | 
					
						
						|  | src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) | 
					
						
						|  |  | 
					
						
						|  | out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode]) | 
					
						
						|  |  | 
					
						
						|  | out_images.append(out_image) | 
					
						
						|  | out_alphas.append(out_alpha.squeeze(2)) | 
					
						
						|  |  | 
					
						
						|  | result = (torch.stack(out_images), torch.stack(out_alphas)) | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SplitImageWithAlpha: | 
					
						
						|  | @classmethod | 
					
						
						|  | def INPUT_TYPES(s): | 
					
						
						|  | return { | 
					
						
						|  | "required": { | 
					
						
						|  | "image": ("IMAGE",), | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | CATEGORY = "mask/compositing" | 
					
						
						|  | RETURN_TYPES = ("IMAGE", "MASK") | 
					
						
						|  | FUNCTION = "split_image_with_alpha" | 
					
						
						|  |  | 
					
						
						|  | def split_image_with_alpha(self, image: torch.Tensor): | 
					
						
						|  | out_images = [i[:,:,:3] for i in image] | 
					
						
						|  | out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image] | 
					
						
						|  | result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas)) | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class JoinImageWithAlpha: | 
					
						
						|  | @classmethod | 
					
						
						|  | def INPUT_TYPES(s): | 
					
						
						|  | return { | 
					
						
						|  | "required": { | 
					
						
						|  | "image": ("IMAGE",), | 
					
						
						|  | "alpha": ("MASK",), | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | CATEGORY = "mask/compositing" | 
					
						
						|  | RETURN_TYPES = ("IMAGE",) | 
					
						
						|  | FUNCTION = "join_image_with_alpha" | 
					
						
						|  |  | 
					
						
						|  | def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor): | 
					
						
						|  | batch_size = min(len(image), len(alpha)) | 
					
						
						|  | out_images = [] | 
					
						
						|  |  | 
					
						
						|  | alpha = 1.0 - resize_mask(alpha, image.shape[1:]) | 
					
						
						|  | for i in range(batch_size): | 
					
						
						|  | out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2)) | 
					
						
						|  |  | 
					
						
						|  | result = (torch.stack(out_images),) | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NODE_CLASS_MAPPINGS = { | 
					
						
						|  | "PorterDuffImageComposite": PorterDuffImageComposite, | 
					
						
						|  | "SplitImageWithAlpha": SplitImageWithAlpha, | 
					
						
						|  | "JoinImageWithAlpha": JoinImageWithAlpha, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NODE_DISPLAY_NAME_MAPPINGS = { | 
					
						
						|  | "PorterDuffImageComposite": "Porter-Duff Image Composite", | 
					
						
						|  | "SplitImageWithAlpha": "Split Image with Alpha", | 
					
						
						|  | "JoinImageWithAlpha": "Join Image with Alpha", | 
					
						
						|  | } | 
					
						
						|  |  |