Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
trans = pipeline("automatic-speech-recognition", model = "facebook/wav2vec2-large-xlsr-53-spanish")
|
5 |
+
clasificador = pipeline("text-classification", model = "pysentimiento/robertuito-sentiment-analysis")
|
6 |
+
|
7 |
+
def audio_to_text(audio):
|
8 |
+
text = trans(audio)["text"]
|
9 |
+
return text
|
10 |
+
|
11 |
+
def text_to_feel(text):
|
12 |
+
return clasificador(text)[0]["label"]
|
13 |
+
|
14 |
+
demo = gr.Blocks()
|
15 |
+
with demo:
|
16 |
+
gr.Markdown("Demo de blocks")
|
17 |
+
with gr.Tabs():
|
18 |
+
with gr.TabItem("trans"):
|
19 |
+
with gr.Row():
|
20 |
+
audio = gr.Audio(source="microphone", type="filepath")
|
21 |
+
transcription = gr.Textbox()
|
22 |
+
b1 = gr.Button("Transcribe pf")
|
23 |
+
with gr.TabItem("sent"):
|
24 |
+
with gr.Row():
|
25 |
+
texto = gr.Textbox()
|
26 |
+
label = gr.Label()
|
27 |
+
b2 = gr.Button("Sent porfa")
|
28 |
+
|
29 |
+
b1.click(audio_to_text, inputs=audio, outputs=transcription)
|
30 |
+
b2.click(text_to_feel, inputs=texto, outputs=label)
|
31 |
+
|
32 |
+
demo.launch()
|