Spaces:
Running
Running
# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py | |
import torch | |
from torch import nn | |
from torch.nn import Conv1d, ConvTranspose1d | |
from torch.nn import functional as F | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.nn.utils.parametrize import remove_parametrizations | |
from TTS.utils.io import load_fsspec | |
LRELU_SLOPE = 0.1 | |
def get_padding(k, d): | |
return int((k * d - d) / 2) | |
class ResBlock1(torch.nn.Module): | |
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block. | |
Network:: | |
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o | |
|--------------------------------------------------------------------------------------------------| | |
Args: | |
channels (int): number of hidden channels for the convolutional layers. | |
kernel_size (int): size of the convolution filter in each layer. | |
dilations (list): list of dilation value for each conv layer in a block. | |
""" | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super().__init__() | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) | |
), | |
weight_norm( | |
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) | |
), | |
weight_norm( | |
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) | |
), | |
] | |
) | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): input tensor. | |
Returns: | |
Tensor: output tensor. | |
Shapes: | |
x: [B, C, T] | |
""" | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, LRELU_SLOPE) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_parametrizations(l, "weight") | |
for l in self.convs2: | |
remove_parametrizations(l, "weight") | |
class ResBlock2(torch.nn.Module): | |
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block. | |
Network:: | |
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o | |
|---------------------------------------------------| | |
Args: | |
channels (int): number of hidden channels for the convolutional layers. | |
kernel_size (int): size of the convolution filter in each layer. | |
dilations (list): list of dilation value for each conv layer in a block. | |
""" | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3)): | |
super().__init__() | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
] | |
) | |
def forward(self, x): | |
for c in self.convs: | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_parametrizations(l, "weight") | |
class HifiganGenerator(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
resblock_type, | |
resblock_dilation_sizes, | |
resblock_kernel_sizes, | |
upsample_kernel_sizes, | |
upsample_initial_channel, | |
upsample_factors, | |
inference_padding=5, | |
cond_channels=0, | |
conv_pre_weight_norm=True, | |
conv_post_weight_norm=True, | |
conv_post_bias=True, | |
): | |
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) | |
Network: | |
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o | |
.. -> zI ---| | |
resblockN_kNx1 -> zN ---' | |
Args: | |
in_channels (int): number of input tensor channels. | |
out_channels (int): number of output tensor channels. | |
resblock_type (str): type of the `ResBlock`. '1' or '2'. | |
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. | |
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. | |
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. | |
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 | |
for each consecutive upsampling layer. | |
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. | |
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. | |
""" | |
super().__init__() | |
self.inference_padding = inference_padding | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_factors) | |
# initial upsampling layers | |
self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) | |
resblock = ResBlock1 if resblock_type == "1" else ResBlock2 | |
# upsampling layers | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
# MRF blocks | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
self.resblocks.append(resblock(ch, k, d)) | |
# post convolution layer | |
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) | |
if cond_channels > 0: | |
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) | |
if not conv_pre_weight_norm: | |
remove_parametrizations(self.conv_pre, "weight") | |
if not conv_post_weight_norm: | |
remove_parametrizations(self.conv_post, "weight") | |
def forward(self, x, g=None): | |
""" | |
Args: | |
x (Tensor): feature input tensor. | |
g (Tensor): global conditioning input tensor. | |
Returns: | |
Tensor: output waveform. | |
Shapes: | |
x: [B, C, T] | |
Tensor: [B, 1, T] | |
""" | |
o = self.conv_pre(x) | |
if hasattr(self, "cond_layer"): | |
o = o + self.cond_layer(g) | |
for i in range(self.num_upsamples): | |
o = F.leaky_relu(o, LRELU_SLOPE) | |
o = self.ups[i](o) | |
z_sum = None | |
for j in range(self.num_kernels): | |
if z_sum is None: | |
z_sum = self.resblocks[i * self.num_kernels + j](o) | |
else: | |
z_sum += self.resblocks[i * self.num_kernels + j](o) | |
o = z_sum / self.num_kernels | |
o = F.leaky_relu(o) | |
o = self.conv_post(o) | |
o = torch.tanh(o) | |
return o | |
def inference(self, c): | |
""" | |
Args: | |
x (Tensor): conditioning input tensor. | |
Returns: | |
Tensor: output waveform. | |
Shapes: | |
x: [B, C, T] | |
Tensor: [B, 1, T] | |
""" | |
c = c.to(self.conv_pre.weight.device) | |
c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") | |
return self.forward(c) | |
def remove_weight_norm(self): | |
print("Removing weight norm...") | |
for l in self.ups: | |
remove_parametrizations(l, "weight") | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_parametrizations(self.conv_pre, "weight") | |
remove_parametrizations(self.conv_post, "weight") | |
def load_checkpoint( | |
self, config, checkpoint_path, eval=False, cache=False | |
): # pylint: disable=unused-argument, redefined-builtin | |
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) | |
self.load_state_dict(state["model"]) | |
if eval: | |
self.eval() | |
assert not self.training | |
self.remove_weight_norm() | |