Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.nn.utils.parametrize import remove_parametrizations | |
class Conv1d(nn.Conv1d): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
nn.init.orthogonal_(self.weight) | |
nn.init.zeros_(self.bias) | |
class PositionalEncoding(nn.Module): | |
"""Positional encoding with noise level conditioning""" | |
def __init__(self, n_channels, max_len=10000): | |
super().__init__() | |
self.n_channels = n_channels | |
self.max_len = max_len | |
self.C = 5000 | |
self.pe = torch.zeros(0, 0) | |
def forward(self, x, noise_level): | |
if x.shape[2] > self.pe.shape[1]: | |
self.init_pe_matrix(x.shape[1], x.shape[2], x) | |
return x + noise_level[..., None, None] + self.pe[:, : x.size(2)].repeat(x.shape[0], 1, 1) / self.C | |
def init_pe_matrix(self, n_channels, max_len, x): | |
pe = torch.zeros(max_len, n_channels) | |
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
div_term = torch.pow(10000, torch.arange(0, n_channels, 2).float() / n_channels) | |
pe[:, 0::2] = torch.sin(position / div_term) | |
pe[:, 1::2] = torch.cos(position / div_term) | |
self.pe = pe.transpose(0, 1).to(x) | |
class FiLM(nn.Module): | |
def __init__(self, input_size, output_size): | |
super().__init__() | |
self.encoding = PositionalEncoding(input_size) | |
self.input_conv = nn.Conv1d(input_size, input_size, 3, padding=1) | |
self.output_conv = nn.Conv1d(input_size, output_size * 2, 3, padding=1) | |
nn.init.xavier_uniform_(self.input_conv.weight) | |
nn.init.xavier_uniform_(self.output_conv.weight) | |
nn.init.zeros_(self.input_conv.bias) | |
nn.init.zeros_(self.output_conv.bias) | |
def forward(self, x, noise_scale): | |
o = self.input_conv(x) | |
o = F.leaky_relu(o, 0.2) | |
o = self.encoding(o, noise_scale) | |
shift, scale = torch.chunk(self.output_conv(o), 2, dim=1) | |
return shift, scale | |
def remove_weight_norm(self): | |
remove_parametrizations(self.input_conv, "weight") | |
remove_parametrizations(self.output_conv, "weight") | |
def apply_weight_norm(self): | |
self.input_conv = weight_norm(self.input_conv) | |
self.output_conv = weight_norm(self.output_conv) | |
def shif_and_scale(x, scale, shift): | |
o = shift + scale * x | |
return o | |
class UBlock(nn.Module): | |
def __init__(self, input_size, hidden_size, factor, dilation): | |
super().__init__() | |
assert isinstance(dilation, (list, tuple)) | |
assert len(dilation) == 4 | |
self.factor = factor | |
self.res_block = Conv1d(input_size, hidden_size, 1) | |
self.main_block = nn.ModuleList( | |
[ | |
Conv1d(input_size, hidden_size, 3, dilation=dilation[0], padding=dilation[0]), | |
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[1], padding=dilation[1]), | |
] | |
) | |
self.out_block = nn.ModuleList( | |
[ | |
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[2], padding=dilation[2]), | |
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[3], padding=dilation[3]), | |
] | |
) | |
def forward(self, x, shift, scale): | |
x_inter = F.interpolate(x, size=x.shape[-1] * self.factor) | |
res = self.res_block(x_inter) | |
o = F.leaky_relu(x_inter, 0.2) | |
o = F.interpolate(o, size=x.shape[-1] * self.factor) | |
o = self.main_block[0](o) | |
o = shif_and_scale(o, scale, shift) | |
o = F.leaky_relu(o, 0.2) | |
o = self.main_block[1](o) | |
res2 = res + o | |
o = shif_and_scale(res2, scale, shift) | |
o = F.leaky_relu(o, 0.2) | |
o = self.out_block[0](o) | |
o = shif_and_scale(o, scale, shift) | |
o = F.leaky_relu(o, 0.2) | |
o = self.out_block[1](o) | |
o = o + res2 | |
return o | |
def remove_weight_norm(self): | |
remove_parametrizations(self.res_block, "weight") | |
for _, layer in enumerate(self.main_block): | |
if len(layer.state_dict()) != 0: | |
remove_parametrizations(layer, "weight") | |
for _, layer in enumerate(self.out_block): | |
if len(layer.state_dict()) != 0: | |
remove_parametrizations(layer, "weight") | |
def apply_weight_norm(self): | |
self.res_block = weight_norm(self.res_block) | |
for idx, layer in enumerate(self.main_block): | |
if len(layer.state_dict()) != 0: | |
self.main_block[idx] = weight_norm(layer) | |
for idx, layer in enumerate(self.out_block): | |
if len(layer.state_dict()) != 0: | |
self.out_block[idx] = weight_norm(layer) | |
class DBlock(nn.Module): | |
def __init__(self, input_size, hidden_size, factor): | |
super().__init__() | |
self.factor = factor | |
self.res_block = Conv1d(input_size, hidden_size, 1) | |
self.main_block = nn.ModuleList( | |
[ | |
Conv1d(input_size, hidden_size, 3, dilation=1, padding=1), | |
Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2), | |
Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4), | |
] | |
) | |
def forward(self, x): | |
size = x.shape[-1] // self.factor | |
res = self.res_block(x) | |
res = F.interpolate(res, size=size) | |
o = F.interpolate(x, size=size) | |
for layer in self.main_block: | |
o = F.leaky_relu(o, 0.2) | |
o = layer(o) | |
return o + res | |
def remove_weight_norm(self): | |
remove_parametrizations(self.res_block, "weight") | |
for _, layer in enumerate(self.main_block): | |
if len(layer.state_dict()) != 0: | |
remove_parametrizations(layer, "weight") | |
def apply_weight_norm(self): | |
self.res_block = weight_norm(self.res_block) | |
for idx, layer in enumerate(self.main_block): | |
if len(layer.state_dict()) != 0: | |
self.main_block[idx] = weight_norm(layer) | |