|
import torch |
|
from accelerate import Accelerator |
|
from accelerate.logging import MultiProcessAdapter |
|
from dataclasses import dataclass, field |
|
from typing import Optional, Union |
|
from datasets import load_dataset |
|
import json |
|
import abc |
|
from diffusers.utils import make_image_grid |
|
import numpy as np |
|
import wandb |
|
|
|
from custum_3d_diffusion.trainings.utils import load_config |
|
from custum_3d_diffusion.custum_modules.unifield_processor import ConfigurableUNet2DConditionModel, AttnConfig |
|
|
|
class BasicTrainer(torch.nn.Module, abc.ABC): |
|
accelerator: Accelerator |
|
logger: MultiProcessAdapter |
|
unet: ConfigurableUNet2DConditionModel |
|
train_dataloader: torch.utils.data.DataLoader |
|
test_dataset: torch.utils.data.Dataset |
|
attn_config: AttnConfig |
|
|
|
@dataclass |
|
class TrainerConfig: |
|
trainer_name: str = "basic" |
|
pretrained_model_name_or_path: str = "" |
|
|
|
attn_config: dict = field(default_factory=dict) |
|
dataset_name: str = "" |
|
dataset_config_name: Optional[str] = None |
|
resolution: str = "1024" |
|
dataloader_num_workers: int = 4 |
|
pair_sampler_group_size: int = 1 |
|
num_views: int = 4 |
|
|
|
max_train_steps: int = -1 |
|
training_step_interval: int = 1 |
|
max_train_samples: Optional[int] = None |
|
seed: Optional[int] = None |
|
train_batch_size: int = 1 |
|
|
|
validation_interval: int = 5000 |
|
debug: bool = False |
|
|
|
cfg: TrainerConfig |
|
|
|
def __init__( |
|
self, |
|
accelerator: Accelerator, |
|
logger: MultiProcessAdapter, |
|
unet: ConfigurableUNet2DConditionModel, |
|
config: Union[dict, str], |
|
weight_dtype: torch.dtype, |
|
index: int, |
|
): |
|
super().__init__() |
|
self.index = index |
|
self.accelerator = accelerator |
|
self.logger = logger |
|
self.unet = unet |
|
self.weight_dtype = weight_dtype |
|
self.ext_logs = {} |
|
self.cfg = load_config(self.TrainerConfig, config) |
|
self.attn_config = load_config(AttnConfig, self.cfg.attn_config) |
|
self.test_dataset = None |
|
self.validate_trainer_config() |
|
self.configure() |
|
|
|
def get_HW(self): |
|
resolution = json.loads(self.cfg.resolution) |
|
if isinstance(resolution, int): |
|
H = W = resolution |
|
elif isinstance(resolution, list): |
|
H, W = resolution |
|
return H, W |
|
|
|
def unet_update(self): |
|
self.unet.update_config(self.attn_config) |
|
|
|
def validate_trainer_config(self): |
|
pass |
|
|
|
def is_train_finished(self, current_step): |
|
assert isinstance(self.cfg.max_train_steps, int) |
|
return self.cfg.max_train_steps != -1 and current_step >= self.cfg.max_train_steps |
|
|
|
def next_train_step(self, current_step): |
|
if self.is_train_finished(current_step): |
|
return None |
|
return current_step + self.cfg.training_step_interval |
|
|
|
@classmethod |
|
def make_image_into_grid(cls, all_imgs, rows=2, columns=2): |
|
catted = [make_image_grid(all_imgs[i:i+rows * columns], rows=rows, cols=columns) for i in range(0, len(all_imgs), rows * columns)] |
|
return make_image_grid(catted, rows=1, cols=len(catted)) |
|
|
|
def configure(self) -> None: |
|
pass |
|
|
|
@abc.abstractmethod |
|
def init_shared_modules(self, shared_modules: dict) -> dict: |
|
pass |
|
|
|
def load_dataset(self): |
|
dataset = load_dataset( |
|
self.cfg.dataset_name, |
|
self.cfg.dataset_config_name, |
|
trust_remote_code=True |
|
) |
|
return dataset |
|
|
|
@abc.abstractmethod |
|
def init_train_dataloader(self, shared_modules: dict) -> torch.utils.data.DataLoader: |
|
"""Both init train_dataloader and test_dataset, but returns train_dataloader only""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def forward_step( |
|
self, |
|
*args, |
|
**kwargs |
|
) -> torch.Tensor: |
|
""" |
|
input a batch |
|
return a loss |
|
""" |
|
self.unet_update() |
|
pass |
|
|
|
@abc.abstractmethod |
|
def construct_pipeline(self, shared_modules, unet): |
|
pass |
|
|
|
@abc.abstractmethod |
|
def pipeline_forward(self, pipeline, **pipeline_call_kwargs) -> tuple: |
|
""" |
|
For inference time forward. |
|
""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def batched_validation_forward(self, pipeline, **pipeline_call_kwargs) -> tuple: |
|
pass |
|
|
|
def do_validation( |
|
self, |
|
shared_modules, |
|
unet, |
|
global_step, |
|
): |
|
self.unet_update() |
|
self.logger.info("Running validation... ") |
|
pipeline = self.construct_pipeline(shared_modules, unet) |
|
pipeline.set_progress_bar_config(disable=True) |
|
titles, images = self.batched_validation_forward(pipeline, guidance_scale=[1., 3.]) |
|
for tracker in self.accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC") |
|
elif tracker.name == "wandb": |
|
[image.thumbnail((512, 512)) for image, title in zip(images, titles) if 'noresize' not in title] |
|
tracker.log({"validation": [ |
|
wandb.Image(image, caption=f"{i}: {titles[i]}", file_type="jpg") |
|
for i, image in enumerate(images)]}) |
|
else: |
|
self.logger.warn(f"image logging not implemented for {tracker.name}") |
|
del pipeline |
|
torch.cuda.empty_cache() |
|
return images |
|
|
|
|
|
@torch.no_grad() |
|
def log_validation( |
|
self, |
|
shared_modules, |
|
unet, |
|
global_step, |
|
force=False |
|
): |
|
if self.accelerator.is_main_process: |
|
for tracker in self.accelerator.trackers: |
|
if tracker.name == "wandb": |
|
tracker.log(self.ext_logs) |
|
self.ext_logs = {} |
|
if (global_step % self.cfg.validation_interval == 0 and not self.is_train_finished(global_step)) or force: |
|
self.unet_update() |
|
if self.accelerator.is_main_process: |
|
self.do_validation(shared_modules, self.accelerator.unwrap_model(unet), global_step) |
|
|
|
def save_model(self, unwrap_unet, shared_modules, save_dir): |
|
if self.accelerator.is_main_process: |
|
pipeline = self.construct_pipeline(shared_modules, unwrap_unet) |
|
pipeline.save_pretrained(save_dir) |
|
self.logger.info(f"{self.cfg.trainer_name} Model saved at {save_dir}") |
|
|
|
def save_debug_info(self, save_name="debug", **kwargs): |
|
if self.cfg.debug: |
|
to_saves = {key: value.detach().cpu() if isinstance(value, torch.Tensor) else value for key, value in kwargs.items()} |
|
import pickle |
|
import os |
|
if os.path.exists(f"{save_name}.pkl"): |
|
for i in range(100): |
|
if not os.path.exists(f"{save_name}_v{i}.pkl"): |
|
save_name = f"{save_name}_v{i}" |
|
break |
|
with open(f"{save_name}.pkl", "wb") as f: |
|
pickle.dump(to_saves, f) |