AudioCraft_Plus / audiocraft /data /sound_dataset.py
GrandaddyShmax
first push
00f2826
raw
history blame
13.4 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Dataset of audio with a simple description.
"""
from dataclasses import dataclass, fields, replace
import json
from pathlib import Path
import random
import typing as tp
import numpy as np
import torch
from .info_audio_dataset import (
InfoAudioDataset,
get_keyword_or_keyword_list
)
from ..modules.conditioners import (
ConditioningAttributes,
SegmentWithAttributes,
WavCondition,
)
EPS = torch.finfo(torch.float32).eps
TARGET_LEVEL_LOWER = -35
TARGET_LEVEL_UPPER = -15
@dataclass
class SoundInfo(SegmentWithAttributes):
"""Segment info augmented with Sound metadata.
"""
description: tp.Optional[str] = None
self_wav: tp.Optional[torch.Tensor] = None
@property
def has_sound_meta(self) -> bool:
return self.description is not None
def to_condition_attributes(self) -> ConditioningAttributes:
out = ConditioningAttributes()
for _field in fields(self):
key, value = _field.name, getattr(self, _field.name)
if key == 'self_wav':
out.wav[key] = value
else:
out.text[key] = value
return out
@staticmethod
def attribute_getter(attribute):
if attribute == 'description':
preprocess_func = get_keyword_or_keyword_list
else:
preprocess_func = None
return preprocess_func
@classmethod
def from_dict(cls, dictionary: dict, fields_required: bool = False):
_dictionary: tp.Dict[str, tp.Any] = {}
# allow a subset of attributes to not be loaded from the dictionary
# these attributes may be populated later
post_init_attributes = ['self_wav']
for _field in fields(cls):
if _field.name in post_init_attributes:
continue
elif _field.name not in dictionary:
if fields_required:
raise KeyError(f"Unexpected missing key: {_field.name}")
else:
preprocess_func: tp.Optional[tp.Callable] = cls.attribute_getter(_field.name)
value = dictionary[_field.name]
if preprocess_func:
value = preprocess_func(value)
_dictionary[_field.name] = value
return cls(**_dictionary)
class SoundDataset(InfoAudioDataset):
"""Sound audio dataset: Audio dataset with environmental sound-specific metadata.
Args:
info_fields_required (bool): Whether all the mandatory metadata fields should be in the loaded metadata.
external_metadata_source (tp.Optional[str]): Folder containing JSON metadata for the corresponding dataset.
The metadata files contained in this folder are expected to match the stem of the audio file with
a json extension.
aug_p (float): Probability of performing audio mixing augmentation on the batch.
mix_p (float): Proportion of batch items that are mixed together when applying audio mixing augmentation.
mix_snr_low (int): Lowerbound for SNR value sampled for mixing augmentation.
mix_snr_high (int): Upperbound for SNR value sampled for mixing augmentation.
mix_min_overlap (float): Minimum overlap between audio files when performing mixing augmentation.
kwargs: Additional arguments for AudioDataset.
See `audiocraft.data.info_audio_dataset.InfoAudioDataset` for full initialization arguments.
"""
def __init__(
self,
*args,
info_fields_required: bool = True,
external_metadata_source: tp.Optional[str] = None,
aug_p: float = 0.,
mix_p: float = 0.,
mix_snr_low: int = -5,
mix_snr_high: int = 5,
mix_min_overlap: float = 0.5,
**kwargs
):
kwargs['return_info'] = True # We require the info for each song of the dataset.
super().__init__(*args, **kwargs)
self.info_fields_required = info_fields_required
self.external_metadata_source = external_metadata_source
self.aug_p = aug_p
self.mix_p = mix_p
if self.aug_p > 0:
assert self.mix_p > 0, "Expecting some mixing proportion mix_p if aug_p > 0"
assert self.channels == 1, "SoundDataset with audio mixing considers only monophonic audio"
self.mix_snr_low = mix_snr_low
self.mix_snr_high = mix_snr_high
self.mix_min_overlap = mix_min_overlap
def _get_info_path(self, path: tp.Union[str, Path]) -> Path:
"""Get path of JSON with metadata (description, etc.).
If there exists a JSON with the same name as 'path.name', then it will be used.
Else, such JSON will be searched for in an external json source folder if it exists.
"""
info_path = Path(path).with_suffix('.json')
if Path(info_path).exists():
return info_path
elif self.external_metadata_source and (Path(self.external_metadata_source) / info_path.name).exists():
return Path(self.external_metadata_source) / info_path.name
else:
raise Exception(f"Unable to find a metadata JSON for path: {path}")
def __getitem__(self, index):
wav, info = super().__getitem__(index)
info_data = info.to_dict()
info_path = self._get_info_path(info.meta.path)
if Path(info_path).exists():
with open(info_path, 'r') as json_file:
sound_data = json.load(json_file)
sound_data.update(info_data)
sound_info = SoundInfo.from_dict(sound_data, fields_required=self.info_fields_required)
# if there are multiple descriptions, sample one randomly
if isinstance(sound_info.description, list):
sound_info.description = random.choice(sound_info.description)
else:
sound_info = SoundInfo.from_dict(info_data, fields_required=False)
sound_info.self_wav = WavCondition(
wav=wav[None], length=torch.tensor([info.n_frames]),
sample_rate=[sound_info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
return wav, sound_info
def collater(self, samples):
# when training, audio mixing is performed in the collate function
wav, sound_info = super().collater(samples) # SoundDataset always returns infos
if self.aug_p > 0:
wav, sound_info = mix_samples(wav, sound_info, self.aug_p, self.mix_p,
snr_low=self.mix_snr_low, snr_high=self.mix_snr_high,
min_overlap=self.mix_min_overlap)
return wav, sound_info
def rms_f(x: torch.Tensor) -> torch.Tensor:
return (x ** 2).mean(1).pow(0.5)
def normalize(audio: torch.Tensor, target_level: int = -25) -> torch.Tensor:
"""Normalize the signal to the target level."""
rms = rms_f(audio)
scalar = 10 ** (target_level / 20) / (rms + EPS)
audio = audio * scalar.unsqueeze(1)
return audio
def is_clipped(audio: torch.Tensor, clipping_threshold: float = 0.99) -> torch.Tensor:
return (abs(audio) > clipping_threshold).any(1)
def mix_pair(src: torch.Tensor, dst: torch.Tensor, min_overlap: float) -> torch.Tensor:
start = random.randint(0, int(src.shape[1] * (1 - min_overlap)))
remainder = src.shape[1] - start
if dst.shape[1] > remainder:
src[:, start:] = src[:, start:] + dst[:, :remainder]
else:
src[:, start:start+dst.shape[1]] = src[:, start:start+dst.shape[1]] + dst
return src
def snr_mixer(clean: torch.Tensor, noise: torch.Tensor, snr: int, min_overlap: float,
target_level: int = -25, clipping_threshold: float = 0.99) -> torch.Tensor:
"""Function to mix clean speech and noise at various SNR levels.
Args:
clean (torch.Tensor): Clean audio source to mix, of shape [B, T].
noise (torch.Tensor): Noise audio source to mix, of shape [B, T].
snr (int): SNR level when mixing.
min_overlap (float): Minimum overlap between the two mixed sources.
target_level (int): Gain level in dB.
clipping_threshold (float): Threshold for clipping the audio.
Returns:
torch.Tensor: The mixed audio, of shape [B, T].
"""
if clean.shape[1] > noise.shape[1]:
noise = torch.nn.functional.pad(noise, (0, clean.shape[1] - noise.shape[1]))
else:
noise = noise[:, :clean.shape[1]]
# normalizing to -25 dB FS
clean = clean / (clean.max(1)[0].abs().unsqueeze(1) + EPS)
clean = normalize(clean, target_level)
rmsclean = rms_f(clean)
noise = noise / (noise.max(1)[0].abs().unsqueeze(1) + EPS)
noise = normalize(noise, target_level)
rmsnoise = rms_f(noise)
# set the noise level for a given SNR
noisescalar = (rmsclean / (10 ** (snr / 20)) / (rmsnoise + EPS)).unsqueeze(1)
noisenewlevel = noise * noisescalar
# mix noise and clean speech
noisyspeech = mix_pair(clean, noisenewlevel, min_overlap)
# randomly select RMS value between -15 dBFS and -35 dBFS and normalize noisyspeech with that value
# there is a chance of clipping that might happen with very less probability, which is not a major issue.
noisy_rms_level = np.random.randint(TARGET_LEVEL_LOWER, TARGET_LEVEL_UPPER)
rmsnoisy = rms_f(noisyspeech)
scalarnoisy = (10 ** (noisy_rms_level / 20) / (rmsnoisy + EPS)).unsqueeze(1)
noisyspeech = noisyspeech * scalarnoisy
clean = clean * scalarnoisy
noisenewlevel = noisenewlevel * scalarnoisy
# final check to see if there are any amplitudes exceeding +/- 1. If so, normalize all the signals accordingly
clipped = is_clipped(noisyspeech)
if clipped.any():
noisyspeech_maxamplevel = noisyspeech[clipped].max(1)[0].abs().unsqueeze(1) / (clipping_threshold - EPS)
noisyspeech[clipped] = noisyspeech[clipped] / noisyspeech_maxamplevel
return noisyspeech
def snr_mix(src: torch.Tensor, dst: torch.Tensor, snr_low: int, snr_high: int, min_overlap: float):
if snr_low == snr_high:
snr = snr_low
else:
snr = np.random.randint(snr_low, snr_high)
mix = snr_mixer(src, dst, snr, min_overlap)
return mix
def mix_text(src_text: str, dst_text: str):
"""Mix text from different sources by concatenating them."""
if src_text == dst_text:
return src_text
return src_text + " " + dst_text
def mix_samples(wavs: torch.Tensor, infos: tp.List[SoundInfo], aug_p: float, mix_p: float,
snr_low: int, snr_high: int, min_overlap: float):
"""Mix samples within a batch, summing the waveforms and concatenating the text infos.
Args:
wavs (torch.Tensor): Audio tensors of shape [B, C, T].
infos (list[SoundInfo]): List of SoundInfo items corresponding to the audio.
aug_p (float): Augmentation probability.
mix_p (float): Proportion of items in the batch to mix (and merge) together.
snr_low (int): Lowerbound for sampling SNR.
snr_high (int): Upperbound for sampling SNR.
min_overlap (float): Minimum overlap between mixed samples.
Returns:
tuple[torch.Tensor, list[SoundInfo]]: A tuple containing the mixed wavs
and mixed SoundInfo for the given batch.
"""
# no mixing to perform within the batch
if mix_p == 0:
return wavs, infos
if random.uniform(0, 1) < aug_p:
# perform all augmentations on waveforms as [B, T]
# randomly picking pairs of audio to mix
assert wavs.size(1) == 1, f"Mix samples requires monophonic audio but C={wavs.size(1)}"
wavs = wavs.mean(dim=1, keepdim=False)
B, T = wavs.shape
k = int(mix_p * B)
mixed_sources_idx = torch.randperm(B)[:k]
mixed_targets_idx = torch.randperm(B)[:k]
aug_wavs = snr_mix(
wavs[mixed_sources_idx],
wavs[mixed_targets_idx],
snr_low,
snr_high,
min_overlap,
)
# mixing textual descriptions in metadata
descriptions = [info.description for info in infos]
aug_infos = []
for i, j in zip(mixed_sources_idx, mixed_targets_idx):
text = mix_text(descriptions[i], descriptions[j])
m = replace(infos[i])
m.description = text
aug_infos.append(m)
# back to [B, C, T]
aug_wavs = aug_wavs.unsqueeze(1)
assert aug_wavs.shape[0] > 0, "Samples mixing returned empty batch."
assert aug_wavs.dim() == 3, f"Returned wav should be [B, C, T] but dim = {aug_wavs.dim()}"
assert aug_wavs.shape[0] == len(aug_infos), "Mismatch between number of wavs and infos in the batch"
return aug_wavs, aug_infos # [B, C, T]
else:
# randomly pick samples in the batch to match
# the batch size when performing audio mixing
B, C, T = wavs.shape
k = int(mix_p * B)
wav_idx = torch.randperm(B)[:k]
wavs = wavs[wav_idx]
infos = [infos[i] for i in wav_idx]
assert wavs.shape[0] == len(infos), "Mismatch between number of wavs and infos in the batch"
return wavs, infos # [B, C, T]