Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
import supervision as sv | |
import json | |
import requests | |
from PIL import Image | |
import numpy as np | |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("Guy2/AirportSec-150epoch") | |
id2label = {0: 'dangerous-items', 1: 'Gun', 2: 'Knife', 3: 'Pliers', 4: 'Scissors', 5: 'Wrench'} | |
def anylize(url): | |
image = Image.open(requests.get(url, stream=True).raw) | |
image = image.convert('RGB') | |
with torch.no_grad(): | |
inputs = image_processor(images=image, return_tensors='pt') | |
outputs = model(**inputs) | |
image = np.array(image) | |
target_sizes = torch.tensor([image.shape[:2]]) | |
results = image_processor.post_process_object_detection( | |
outputs=outputs, | |
threshold=0.8, | |
target_sizes=target_sizes | |
)[0] | |
# annotate | |
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) | |
# labels = [str([list(xyxy), confidence, id2label[class_id]]) for xyxy, _, confidence, class_id, _ in detections] | |
labels = [[list(xyxy), confidence, id2label[class_id]] for xyxy, _, confidence, class_id, _ in detections] | |
print(labels) | |
return str(labels) | |
# json_list = json.dumps(labels) | |
# return json_list | |
gr.Interface(fn = anylize, inputs="text", outputs="text").launch() | |
# gr.Interface(fn = anylize, inputs="text", outputs="image").launch() | |