Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
import supervision as sv | |
import json | |
id2label = {0: 'dangerous-items', 1: 'Gun', 2: 'Knife', 3: 'Pliers', 4: 'Scissors', 5: 'Wrench'} | |
def anylize(image): | |
with torch.no_grad(): | |
inputs = image_processor(images=image, return_tensors='pt') | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([image.shape[:2]]) | |
results = image_processor.post_process_object_detection( | |
outputs=outputs, | |
threshold=0.8, | |
target_sizes=target_sizes | |
)[0] | |
# annotate | |
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) | |
out = {} | |
for idx, detection in enumerate(detections): | |
cls = id2label[detection.class_id] | |
confidence = detection.confidence | |
box = detection.xyxy | |
out[str(idx)] = { | |
"box":list(box), | |
"cls":cls, | |
"conf":confidence | |
} | |
#labels = [str([list(xyxy), confidence, id2label[class_id]]) for xyxy, _, confidence, class_id, _ in detections] | |
#json_list = json.dumps(str(labels[0])) | |
return out | |
gr.Interface(fn = anylize, inputs="image", outputs=gr.JSON()).launch() |