import gradio as gr | |
import joblib | |
# Load your trained model from the model file | |
model = joblib.load("model.pkl") | |
# Define a function to use with the Gradio interface | |
def predict_sentiment(text): | |
prediction = model.predict([text])[0] | |
probabilities = model.predict_proba([text])[0] | |
return { | |
"Prediction": prediction, | |
"Probabilities": dict(zip(model.classes_, probabilities)) | |
} | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=predict_sentiment, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), | |
outputs=gr.JSON(label="Prediction and Probabilities"), | |
title="Sentiment Analysis App", | |
description="This app predicts sentiment responses using a trained logistic regression model." | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
interface.launch() | |