Spaces:
Runtime error
Runtime error
import os | |
import time | |
from typing import Any | |
import requests | |
import streamlit as st | |
from dotenv import find_dotenv, load_dotenv | |
from langchain.chains import LLMChain | |
from langchain.chat_models import ChatOpenAI | |
from langchain.prompts import PromptTemplate | |
from transformers import pipeline | |
from utils.custom import css_code | |
load_dotenv(find_dotenv()) | |
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN") | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
def progress_bar(amount_of_time: int) -> Any: | |
""" | |
A very simple progress bar the increases over time, | |
then disappears when it reached completion | |
:param amount_of_time: time taken | |
:return: None | |
""" | |
progress_text = "Please wait, Generative models hard at work" | |
my_bar = st.progress(0, text=progress_text) | |
for percent_complete in range(amount_of_time): | |
time.sleep(0.04) | |
my_bar.progress(percent_complete + 1, text=progress_text) | |
time.sleep(1) | |
my_bar.empty() | |
def generate_text_from_image(url: str) -> str: | |
""" | |
A function that uses the blip model to generate text from an image. | |
:param url: image location | |
:return: text: generated text from the image | |
""" | |
image_to_text: Any = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
generated_text: str = image_to_text(url)[0]["generated_text"] | |
print(f"IMAGE INPUT: {url}") | |
print(f"GENERATED TEXT OUTPUT: {generated_text}") | |
return generated_text | |
def generate_story_from_text(scenario: str) -> str: | |
""" | |
A function using a prompt template and GPT to generate a short story. LangChain is also | |
used for chaining purposes | |
:param scenario: generated text from the image | |
:return: generated story from the text | |
""" | |
prompt_template: str = f""" | |
You are a talented story teller who can create a story from a simple narrative./ | |
Create a story using the following scenario; the story should have be maximum 50 words long; | |
CONTEXT: {scenario} | |
STORY: | |
""" | |
prompt: PromptTemplate = PromptTemplate(template=prompt_template, input_variables=["scenario"]) | |
llm: Any = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.9) | |
story_llm: Any = LLMChain(llm=llm, prompt=prompt, verbose=True) | |
generated_story: str = story_llm.predict(scenario=scenario) | |
print(f"TEXT INPUT: {scenario}") | |
print(f"GENERATED STORY OUTPUT: {generated_story}") | |
return generated_story | |
def generate_speech_from_text(message: str) -> Any: | |
""" | |
A function using the ESPnet text to speech model from HuggingFace | |
:param message: short story generated by the GPT model | |
:return: generated audio from the short story | |
""" | |
API_URL: str = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" | |
headers: dict[str, str] = {"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}"} | |
payloads: dict[str, str] = { | |
"inputs": message | |
} | |
response: Any = requests.post(API_URL, headers=headers, json=payloads) | |
with open("generated_audio.flac", "wb") as file: | |
file.write(response.content) | |
def main() -> None: | |
""" | |
Main function | |
:return: None | |
""" | |
st.set_page_config(page_title= "IMAGE TO STORY CONVERTER", page_icon= "🖼️") | |
st.markdown(css_code, unsafe_allow_html=True) | |
with st.sidebar: | |
st.image("img/gkj.jpg") | |
st.write("---") | |
st.write("AI App created by @ Gurpreet Kaur") | |
st.header("Image-to-Story Converter") | |
uploaded_file: Any = st.file_uploader("Please choose a file to upload", type="jpg") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data: Any = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image", | |
use_column_width=True) | |
progress_bar(100) | |
scenario: str = generate_text_from_image(uploaded_file.name) | |
story: str = generate_story_from_text(scenario) | |
generate_speech_from_text(story) | |
with st.expander("Generated Image scenario"): | |
st.write(scenario) | |
with st.expander("Generated short story"): | |
st.write(story) | |
st.audio("generated_audio.flac") | |
if __name__ == "__main__": | |
main() |