Spaces:
Runtime error
Runtime error
Guhanselvam
commited on
Commit
•
4b147f9
1
Parent(s):
71bf66b
Update app.py
Browse files
app.py
CHANGED
@@ -1,151 +1,45 @@
|
|
1 |
-
from
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
),
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
ui.help_text(
|
47 |
-
"Artwork by ",
|
48 |
-
ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
|
49 |
-
class_="text-end",
|
50 |
-
),
|
51 |
-
),
|
52 |
-
)
|
53 |
-
|
54 |
-
|
55 |
-
def server(input: Inputs, output: Outputs, session: Session):
|
56 |
-
@reactive.Calc
|
57 |
-
def filtered_df() -> pd.DataFrame:
|
58 |
-
"""Returns a Pandas data frame that includes only the desired rows"""
|
59 |
-
|
60 |
-
# This calculation "req"uires that at least one species is selected
|
61 |
-
req(len(input.species()) > 0)
|
62 |
-
|
63 |
-
# Filter the rows so we only include the desired species
|
64 |
-
return df[df["Species"].isin(input.species())]
|
65 |
-
|
66 |
-
@output
|
67 |
-
@render.plot
|
68 |
-
def scatter():
|
69 |
-
"""Generates a plot for Shiny to display to the user"""
|
70 |
-
|
71 |
-
# The plotting function to use depends on whether margins are desired
|
72 |
-
plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
|
73 |
-
|
74 |
-
plotfunc(
|
75 |
-
data=filtered_df(),
|
76 |
-
x=input.xvar(),
|
77 |
-
y=input.yvar(),
|
78 |
-
palette=palette,
|
79 |
-
hue="Species" if input.by_species() else None,
|
80 |
-
hue_order=species,
|
81 |
-
legend=False,
|
82 |
-
)
|
83 |
-
|
84 |
-
@output
|
85 |
-
@render.ui
|
86 |
-
def value_boxes():
|
87 |
-
df = filtered_df()
|
88 |
-
|
89 |
-
def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
|
90 |
-
return ui.value_box(
|
91 |
-
title,
|
92 |
-
count,
|
93 |
-
{"class_": "pt-1 pb-0"},
|
94 |
-
showcase=ui.fill.as_fill_item(
|
95 |
-
ui.tags.img(
|
96 |
-
{"style": "object-fit:contain;"},
|
97 |
-
src=showcase_img,
|
98 |
-
)
|
99 |
-
),
|
100 |
-
theme_color=None,
|
101 |
-
style=f"background-color: {bgcol};",
|
102 |
-
)
|
103 |
-
|
104 |
-
if not input.by_species():
|
105 |
-
return penguin_value_box(
|
106 |
-
"Penguins",
|
107 |
-
len(df.index),
|
108 |
-
bg_palette["default"],
|
109 |
-
# Artwork by @allison_horst
|
110 |
-
showcase_img="penguins.png",
|
111 |
-
)
|
112 |
-
|
113 |
-
value_boxes = [
|
114 |
-
penguin_value_box(
|
115 |
-
name,
|
116 |
-
len(df[df["Species"] == name]),
|
117 |
-
bg_palette[name],
|
118 |
-
# Artwork by @allison_horst
|
119 |
-
showcase_img=f"{name}.png",
|
120 |
-
)
|
121 |
-
for name in species
|
122 |
-
# Only include boxes for _selected_ species
|
123 |
-
if name in input.species()
|
124 |
-
]
|
125 |
-
|
126 |
-
return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
|
127 |
-
|
128 |
-
|
129 |
-
# "darkorange", "purple", "cyan4"
|
130 |
-
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
|
131 |
-
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
|
132 |
-
|
133 |
-
palette: Dict[str, Tuple[float, float, float]] = {
|
134 |
-
"Adelie": colors[0],
|
135 |
-
"Chinstrap": colors[1],
|
136 |
-
"Gentoo": colors[2],
|
137 |
-
"default": sns.color_palette()[0], # type: ignore
|
138 |
-
}
|
139 |
-
|
140 |
-
bg_palette = {}
|
141 |
-
# Use `sns.set_style("whitegrid")` to help find approx alpha value
|
142 |
-
for name, col in palette.items():
|
143 |
-
# Adjusted n_colors until `axe` accessibility did not complain about color contrast
|
144 |
-
bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
|
145 |
-
|
146 |
-
|
147 |
-
app = App(
|
148 |
-
app_ui,
|
149 |
-
server,
|
150 |
-
static_assets=str(www_dir),
|
151 |
-
)
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
3 |
+
|
4 |
+
# Initialize Flask app
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Load pre-trained model and tokenizer
|
8 |
+
model_name = "bert-base-uncased"
|
9 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
10 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Set up a pipeline
|
13 |
+
nlp_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
14 |
+
|
15 |
+
def analyze_sentiment(text):
|
16 |
+
"""
|
17 |
+
Analyze the sentiment of the input text using the NLP pipeline.
|
18 |
+
Returns a tuple of sentiment label and confidence score.
|
19 |
+
"""
|
20 |
+
result = nlp_pipeline(text)
|
21 |
+
sentiment = result[0]['label']
|
22 |
+
confidence = result[0]['score']
|
23 |
+
return sentiment, confidence
|
24 |
+
|
25 |
+
@app.route('/analyze', methods=['POST'])
|
26 |
+
def analyze():
|
27 |
+
"""
|
28 |
+
API endpoint to analyze sentiment. Expects a JSON payload with 'text'.
|
29 |
+
"""
|
30 |
+
if request.is_json:
|
31 |
+
data = request.json
|
32 |
+
text = data.get('text', '')
|
33 |
+
if text:
|
34 |
+
sentiment, confidence = analyze_sentiment(text)
|
35 |
+
response = {
|
36 |
+
"sentiment": sentiment,
|
37 |
+
"confidence": confidence
|
38 |
+
}
|
39 |
+
return jsonify(response), 200
|
40 |
+
else:
|
41 |
+
return jsonify({"error": "No text provided"}), 400
|
42 |
+
return jsonify({"error": "Invalid request format, JSON expected"}), 400
|
43 |
+
|
44 |
+
if __name__ == '__main__':
|
45 |
+
app.run(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|