Guhanselvam commited on
Commit
4b147f9
1 Parent(s): 71bf66b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -151
app.py CHANGED
@@ -1,151 +1,45 @@
1
- from pathlib import Path
2
- from typing import List, Dict, Tuple
3
- import matplotlib.colors as mpl_colors
4
-
5
- import pandas as pd
6
- import seaborn as sns
7
- import shinyswatch
8
-
9
- from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
10
-
11
- sns.set_theme()
12
-
13
- www_dir = Path(__file__).parent.resolve() / "www"
14
-
15
- df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
16
- numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
17
- species: List[str] = df["Species"].unique().tolist()
18
- species.sort()
19
-
20
- app_ui = ui.page_fillable(
21
- shinyswatch.theme.minty(),
22
- ui.layout_sidebar(
23
- ui.sidebar(
24
- # Artwork by @allison_horst
25
- ui.input_selectize(
26
- "xvar",
27
- "X variable",
28
- numeric_cols,
29
- selected="Bill Length (mm)",
30
- ),
31
- ui.input_selectize(
32
- "yvar",
33
- "Y variable",
34
- numeric_cols,
35
- selected="Bill Depth (mm)",
36
- ),
37
- ui.input_checkbox_group(
38
- "species", "Filter by species", species, selected=species
39
- ),
40
- ui.hr(),
41
- ui.input_switch("by_species", "Show species", value=True),
42
- ui.input_switch("show_margins", "Show marginal plots", value=True),
43
- ),
44
- ui.output_ui("value_boxes"),
45
- ui.output_plot("scatter", fill=True),
46
- ui.help_text(
47
- "Artwork by ",
48
- ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
49
- class_="text-end",
50
- ),
51
- ),
52
- )
53
-
54
-
55
- def server(input: Inputs, output: Outputs, session: Session):
56
- @reactive.Calc
57
- def filtered_df() -> pd.DataFrame:
58
- """Returns a Pandas data frame that includes only the desired rows"""
59
-
60
- # This calculation "req"uires that at least one species is selected
61
- req(len(input.species()) > 0)
62
-
63
- # Filter the rows so we only include the desired species
64
- return df[df["Species"].isin(input.species())]
65
-
66
- @output
67
- @render.plot
68
- def scatter():
69
- """Generates a plot for Shiny to display to the user"""
70
-
71
- # The plotting function to use depends on whether margins are desired
72
- plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
73
-
74
- plotfunc(
75
- data=filtered_df(),
76
- x=input.xvar(),
77
- y=input.yvar(),
78
- palette=palette,
79
- hue="Species" if input.by_species() else None,
80
- hue_order=species,
81
- legend=False,
82
- )
83
-
84
- @output
85
- @render.ui
86
- def value_boxes():
87
- df = filtered_df()
88
-
89
- def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
90
- return ui.value_box(
91
- title,
92
- count,
93
- {"class_": "pt-1 pb-0"},
94
- showcase=ui.fill.as_fill_item(
95
- ui.tags.img(
96
- {"style": "object-fit:contain;"},
97
- src=showcase_img,
98
- )
99
- ),
100
- theme_color=None,
101
- style=f"background-color: {bgcol};",
102
- )
103
-
104
- if not input.by_species():
105
- return penguin_value_box(
106
- "Penguins",
107
- len(df.index),
108
- bg_palette["default"],
109
- # Artwork by @allison_horst
110
- showcase_img="penguins.png",
111
- )
112
-
113
- value_boxes = [
114
- penguin_value_box(
115
- name,
116
- len(df[df["Species"] == name]),
117
- bg_palette[name],
118
- # Artwork by @allison_horst
119
- showcase_img=f"{name}.png",
120
- )
121
- for name in species
122
- # Only include boxes for _selected_ species
123
- if name in input.species()
124
- ]
125
-
126
- return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
127
-
128
-
129
- # "darkorange", "purple", "cyan4"
130
- colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
131
- colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
132
-
133
- palette: Dict[str, Tuple[float, float, float]] = {
134
- "Adelie": colors[0],
135
- "Chinstrap": colors[1],
136
- "Gentoo": colors[2],
137
- "default": sns.color_palette()[0], # type: ignore
138
- }
139
-
140
- bg_palette = {}
141
- # Use `sns.set_style("whitegrid")` to help find approx alpha value
142
- for name, col in palette.items():
143
- # Adjusted n_colors until `axe` accessibility did not complain about color contrast
144
- bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
145
-
146
-
147
- app = App(
148
- app_ui,
149
- server,
150
- static_assets=str(www_dir),
151
- )
 
1
+ from flask import Flask, request, jsonify
2
+ from transformers import BertTokenizer, BertForSequenceClassification, pipeline
3
+
4
+ # Initialize Flask app
5
+ app = Flask(__name__)
6
+
7
+ # Load pre-trained model and tokenizer
8
+ model_name = "bert-base-uncased"
9
+ tokenizer = BertTokenizer.from_pretrained(model_name)
10
+ model = BertForSequenceClassification.from_pretrained(model_name)
11
+
12
+ # Set up a pipeline
13
+ nlp_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
14
+
15
+ def analyze_sentiment(text):
16
+ """
17
+ Analyze the sentiment of the input text using the NLP pipeline.
18
+ Returns a tuple of sentiment label and confidence score.
19
+ """
20
+ result = nlp_pipeline(text)
21
+ sentiment = result[0]['label']
22
+ confidence = result[0]['score']
23
+ return sentiment, confidence
24
+
25
+ @app.route('/analyze', methods=['POST'])
26
+ def analyze():
27
+ """
28
+ API endpoint to analyze sentiment. Expects a JSON payload with 'text'.
29
+ """
30
+ if request.is_json:
31
+ data = request.json
32
+ text = data.get('text', '')
33
+ if text:
34
+ sentiment, confidence = analyze_sentiment(text)
35
+ response = {
36
+ "sentiment": sentiment,
37
+ "confidence": confidence
38
+ }
39
+ return jsonify(response), 200
40
+ else:
41
+ return jsonify({"error": "No text provided"}), 400
42
+ return jsonify({"error": "Invalid request format, JSON expected"}), 400
43
+
44
+ if __name__ == '__main__':
45
+ app.run(debug=True)