Spaces:
Running
Running
import torch | |
from fairseq import checkpoint_utils | |
from vencoder.encoder import SpeechEncoder | |
class ContentVec256L9(SpeechEncoder): | |
def __init__(self, vec_path="pretrain/checkpoint_best_legacy_500.pt", device=None): | |
super().__init__() | |
print("load model(s) from {}".format(vec_path)) | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
[vec_path], | |
suffix="", | |
) | |
self.hidden_dim = 256 | |
if device is None: | |
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
else: | |
self.dev = torch.device(device) | |
self.model = models[0].to(self.dev) | |
self.model.eval() | |
def encoder(self, wav): | |
feats = wav | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
feats = feats.view(1, -1) | |
padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
inputs = { | |
"source": feats.to(wav.device), | |
"padding_mask": padding_mask.to(wav.device), | |
"output_layer": 9, # layer 9 | |
} | |
with torch.no_grad(): | |
logits = self.model.extract_features(**inputs) | |
feats = self.model.final_proj(logits[0]) | |
return feats.transpose(1, 2) | |