Spaces:
Sleeping
Sleeping
Use urllib
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
from datasets import load_dataset
|
2 |
import streamlit as st
|
|
|
3 |
from inseq import FeatureAttributionOutput
|
4 |
|
5 |
st.set_page_config(layout="wide")
|
@@ -9,8 +10,6 @@ attribution_path = "https://huggingface.co/datasets/inseq/divemt_attributions/re
|
|
9 |
df = dataset["train"].to_pandas()
|
10 |
unique_src = df[["item_id", "src_text"]].drop_duplicates(subset="item_id")
|
11 |
langs = list(df["lang_id"].unique())
|
12 |
-
dl = DownloadManager()
|
13 |
-
|
14 |
st.title("DivEMT Explorer π π")
|
15 |
st.markdown("""
|
16 |
##### The DivEMT Explorer is a tool to explore translations and edits in the DivEMT corpus.
|
@@ -91,8 +90,11 @@ for lang in langs:
|
|
91 |
st.text("Click on checkboxes to show/hide the respective attributions computed with mBART 1-to-50.")
|
92 |
for sentence_type in ["mt", "pe", "diff"]:
|
93 |
url = attribution_path.format(idx=item_id, setting=setting, sentence_type=sentence_type)
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
if st.checkbox(sentence_type.upper(), key=f"{lang}_{task_name}_{sentence_type}"):
|
97 |
st.markdown(f"{attr.show(return_html=True, display=False, do_aggregation=False)}", unsafe_allow_html=True)
|
98 |
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
import streamlit as st
|
3 |
+
import urllib
|
4 |
from inseq import FeatureAttributionOutput
|
5 |
|
6 |
st.set_page_config(layout="wide")
|
|
|
10 |
df = dataset["train"].to_pandas()
|
11 |
unique_src = df[["item_id", "src_text"]].drop_duplicates(subset="item_id")
|
12 |
langs = list(df["lang_id"].unique())
|
|
|
|
|
13 |
st.title("DivEMT Explorer π π")
|
14 |
st.markdown("""
|
15 |
##### The DivEMT Explorer is a tool to explore translations and edits in the DivEMT corpus.
|
|
|
90 |
st.text("Click on checkboxes to show/hide the respective attributions computed with mBART 1-to-50.")
|
91 |
for sentence_type in ["mt", "pe", "diff"]:
|
92 |
url = attribution_path.format(idx=item_id, setting=setting, sentence_type=sentence_type)
|
93 |
+
g = urllib.request.urlopen(url)
|
94 |
+
fpath = f"attr_{sentence_type}.json.gz"
|
95 |
+
with open(fpath, 'b+w') as f:
|
96 |
+
f.write(g.read())
|
97 |
+
attr = FeatureAttributionOutput.load(fpath, decompress=True)
|
98 |
if st.checkbox(sentence_type.upper(), key=f"{lang}_{task_name}_{sentence_type}"):
|
99 |
st.markdown(f"{attr.show(return_html=True, display=False, do_aggregation=False)}", unsafe_allow_html=True)
|
100 |
|