updated front end
Browse files- .streamlit/config.toml +2 -0
- app.py +266 -243
- images/AGALMA_logo.png +0 -0
.streamlit/config.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
primaryColor="B8E52B"
|
app.py
CHANGED
@@ -10,7 +10,7 @@ import json
|
|
10 |
from streamlit_tags import st_tags, st_tags_sidebar
|
11 |
|
12 |
|
13 |
-
st.set_page_config(page_title="
|
14 |
|
15 |
# Cache data
|
16 |
@st.cache_data
|
@@ -46,6 +46,8 @@ models_for_word_dict = load_models_for_word_dict()
|
|
46 |
lemma_counts = load_lemma_count_dict()
|
47 |
|
48 |
|
|
|
|
|
49 |
# Set styles for menu
|
50 |
styles = {
|
51 |
"container": {"display": "flex", "justify-content": "center"},
|
@@ -70,289 +72,310 @@ styles = {
|
|
70 |
"color": "#000"
|
71 |
},
|
72 |
"nav-link-selected": {
|
73 |
-
"background-color": "
|
74 |
"color": "white",
|
75 |
"font-weight": "bold"
|
76 |
},
|
77 |
"icon": {"display": "None"}
|
78 |
}
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
-
# Adding CSS style to remove list-style-type
|
86 |
-
st.markdown("""
|
87 |
-
<style>
|
88 |
-
/* Define a class to remove list-style-type */
|
89 |
-
.no-list-style {
|
90 |
-
|
91 |
-
}
|
92 |
-
</style>
|
93 |
-
""", unsafe_allow_html=True)
|
94 |
|
95 |
|
96 |
|
97 |
-
# Nearest neighbours tab
|
98 |
-
if active_tab == "Nearest neighbours":
|
99 |
-
|
100 |
-
# All models in a list
|
101 |
-
eligible_models = ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
|
102 |
-
all_models_words = load_all_models_words()
|
103 |
-
|
104 |
-
with st.container():
|
105 |
-
st.markdown("## Nearest Neighbours")
|
106 |
-
st.markdown('Here you can extract the nearest neighbours to a chosen lemma. Please select one or more time slices and the preferred number of nearest neighbours.')
|
107 |
-
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
108 |
-
if len(target_word) > 0:
|
109 |
-
target_word = target_word[0]
|
110 |
-
|
111 |
-
eligible_models = models_for_word_dict[target_word]
|
112 |
|
113 |
-
models
|
114 |
-
|
115 |
-
|
116 |
-
)
|
117 |
-
n = st.slider("Number of neighbours", 1, 50, 15)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
nearest_neighbours = get_nearest_neighbours(target_word, n, models)
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
for model in nearest_neighbours.keys():
|
134 |
-
st.write(f"### {model}")
|
135 |
-
df = pd.DataFrame(
|
136 |
-
nearest_neighbours[model],
|
137 |
-
columns = ['Word', 'Cosine Similarity']
|
138 |
)
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
st.table(df)
|
147 |
-
|
148 |
-
|
149 |
-
# Store content in a temporary file
|
150 |
-
tmp_file = store_df_in_temp_file(all_dfs)
|
151 |
-
|
152 |
-
# Open the temporary file and read its content
|
153 |
-
with open(tmp_file, "rb") as file:
|
154 |
-
file_byte = file.read()
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
162 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
# Cosine similarity tab
|
166 |
-
elif active_tab == "Cosine similarity":
|
167 |
-
all_models_words = load_all_models_words()
|
168 |
-
|
169 |
-
with st.container():
|
170 |
-
eligible_models_1 = []
|
171 |
-
eligible_models_2 = []
|
172 |
-
st.markdown("## Cosine similarity")
|
173 |
-
st.markdown('Here you can extract the cosine similarity between two lemmas. Please select a time slice for each lemma. You can also calculate the cosine similarity between two vectors of the same lemma in different time slices.')
|
174 |
-
col1, col2 = st.columns(2)
|
175 |
-
col3, col4 = st.columns(2)
|
176 |
-
with col1:
|
177 |
-
word_1 = st.multiselect("Enter a word", placeholder="πατήρ", max_selections=1, options=all_models_words)
|
178 |
-
if len(word_1) > 0:
|
179 |
-
word_1 = word_1[0]
|
180 |
-
eligible_models_1 = models_for_word_dict[word_1]
|
181 |
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
with st.container():
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
192 |
|
193 |
-
with
|
194 |
-
|
195 |
-
|
196 |
-
# Create button for calculating cosine similarity
|
197 |
-
cosine_similarity_button = st.button("Calculate cosine similarity")
|
198 |
-
|
199 |
-
# If the button is clicked, execute calculation
|
200 |
-
if cosine_similarity_button:
|
201 |
-
cosine_simularity_score = get_cosine_similarity(word_1, time_slice_1, word_2, time_slice_2)
|
202 |
-
st.write(cosine_simularity_score)
|
203 |
-
|
204 |
-
# 3D graph tab
|
205 |
-
elif active_tab == "3D graph":
|
206 |
-
st.markdown("## 3D graph")
|
207 |
-
st.markdown('Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.')
|
208 |
-
|
209 |
-
col1, col2 = st.columns(2)
|
210 |
-
|
211 |
-
# Load compressed word list
|
212 |
-
all_models_words = load_all_models_words()
|
213 |
-
|
214 |
-
with st.container():
|
215 |
-
eligible_models = []
|
216 |
-
with col1:
|
217 |
-
word = st.multiselect("Enter a word", all_models_words, max_selections=1)
|
218 |
-
if len(word) > 0:
|
219 |
-
word = word[0]
|
220 |
-
eligible_models = models_for_word_dict[word]
|
221 |
-
|
222 |
-
with col2:
|
223 |
-
time_slice = st.selectbox("Time slice", eligible_models)
|
224 |
|
225 |
-
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
if graph_button:
|
230 |
-
time_slice_model = convert_time_name_to_model(time_slice)
|
231 |
-
nearest_neighbours_vectors = get_nearest_neighbours_vectors(word, time_slice_model, n)
|
232 |
-
|
233 |
-
fig, df = make_3d_plot_tSNE(nearest_neighbours_vectors, word, time_slice_model)
|
234 |
-
|
235 |
-
st.plotly_chart(fig)
|
236 |
-
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
st.markdown('Search a word in the Liddell-Scott-Jones dictionary (only Greek, no whitespaces).')
|
247 |
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
# query_word = st.multiselect("Search a word in the LSJ dictionary", all_lemmas, max_selections=1)
|
252 |
-
|
253 |
-
query_tag = st_tags(label='',
|
254 |
-
text = '',
|
255 |
-
value = [],
|
256 |
-
suggestions = all_lemmas,
|
257 |
-
maxtags = 1,
|
258 |
-
key = '1'
|
259 |
-
)
|
260 |
-
|
261 |
-
# If a word has been selected by user
|
262 |
-
if query_tag:
|
263 |
-
st.write(f"### {query_tag[0]}")
|
264 |
|
265 |
-
#
|
266 |
-
if query_tag[0] in lemma_dict:
|
267 |
-
data = lemma_dict[query_tag[0]]
|
268 |
-
elif query_tag[0].capitalize() in lemma_dict: # Some words are capitalized in the dictionary
|
269 |
-
data = lemma_dict[query_tag[0].capitalize()]
|
270 |
-
else:
|
271 |
-
st.error("Word not found in dictionary")
|
272 |
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
|
278 |
-
|
|
|
|
|
279 |
|
280 |
|
281 |
-
|
282 |
-
<style>
|
283 |
-
.tab {
|
284 |
-
display: inline-block;
|
285 |
-
margin-left: 4em;
|
286 |
-
}
|
287 |
-
.tr {
|
288 |
-
font-weight: bold;
|
289 |
-
}
|
290 |
-
.list-class {
|
291 |
-
list-style-type: none;
|
292 |
-
margin-top: 1em;
|
293 |
-
}
|
294 |
-
.primary-indicator {
|
295 |
-
font-weight: bold;
|
296 |
-
font-size: x-large;
|
297 |
-
}
|
298 |
-
.secondary-indicator {
|
299 |
-
font-weight: bold;
|
300 |
-
font-size: large;
|
301 |
-
}
|
302 |
-
.tertiary-indicator {
|
303 |
-
font-weight: bold;
|
304 |
-
font-size: medium;
|
305 |
-
}
|
306 |
-
.quaternary-indicator {
|
307 |
-
font-weight: bold;
|
308 |
-
font-size: medium;
|
309 |
-
}
|
310 |
-
.primary-class {
|
311 |
-
padding-left: 2em;
|
312 |
-
}
|
313 |
-
.secondary-class {
|
314 |
-
padding-left: 4em;
|
315 |
-
}
|
316 |
-
.tertiary-class {
|
317 |
-
padding-left: 6em;
|
318 |
-
}
|
319 |
-
.quaternary-class {
|
320 |
-
padding-left: 8em;
|
321 |
-
}
|
322 |
-
</style>
|
323 |
-
""", unsafe_allow_html=True)
|
324 |
-
|
325 |
-
|
326 |
-
# About tab
|
327 |
-
elif active_tab == "About":
|
328 |
st.markdown("""
|
329 |
## About
|
330 |
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nec purus nec nunc ultricies ultricies.
|
331 |
""")
|
332 |
-
|
333 |
-
|
334 |
-
elif active_tab == "FAQ":
|
335 |
-
st.markdown("""
|
336 |
-
## FAQ
|
337 |
-
""")
|
338 |
-
|
339 |
-
with st.expander('''**Which models is this interface based on?**'''):
|
340 |
-
st.write(
|
341 |
-
"This interface is based on five language models. \
|
342 |
-
Language models are statistical models of language, \
|
343 |
-
which store statistical information about word co-occurrence during the training phase. \
|
344 |
-
During training they process a corpus of texts in the target language(s). \
|
345 |
-
Once trained, models can be used to extract information about the language \
|
346 |
-
(in this interface, we focus on the extraction of semantic information) or to perform specific linguistic tasks. \
|
347 |
-
The models on which this interface is based are Word Embedding models."
|
348 |
-
)
|
349 |
-
|
350 |
-
with st.expander('''**Which corpus was used to train the models?**'''):
|
351 |
-
st.write(
|
352 |
-
"The five models on which this interface is based were trained on five slices of the Diorisis Ancient Greek Corpus (Vatri & McGillivray 2018)."
|
353 |
-
)
|
354 |
|
355 |
|
356 |
-
|
357 |
-
|
358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from streamlit_tags import st_tags, st_tags_sidebar
|
11 |
|
12 |
|
13 |
+
st.set_page_config(page_title="ἄγαλμα | AGALMA", layout="centered")
|
14 |
|
15 |
# Cache data
|
16 |
@st.cache_data
|
|
|
46 |
lemma_counts = load_lemma_count_dict()
|
47 |
|
48 |
|
49 |
+
|
50 |
+
|
51 |
# Set styles for menu
|
52 |
styles = {
|
53 |
"container": {"display": "flex", "justify-content": "center"},
|
|
|
72 |
"color": "#000"
|
73 |
},
|
74 |
"nav-link-selected": {
|
75 |
+
"background-color": "#B8E52B",
|
76 |
"color": "white",
|
77 |
"font-weight": "bold"
|
78 |
},
|
79 |
"icon": {"display": "None"}
|
80 |
}
|
81 |
|
82 |
+
with st.sidebar:
|
83 |
+
st.image('images/AGALMA_logo.png', width=250)
|
84 |
+
st.markdown('# ἄγαλμα | AGALMA')
|
85 |
+
selected = option_menu(None, ["App", "About", "FAQ", "License"],
|
86 |
+
menu_icon="menu", default_index=0, orientation="vertical")
|
87 |
+
|
88 |
+
if selected == "App":
|
89 |
+
# Horizontal menu
|
90 |
+
active_tab = option_menu(None, ["Nearest neighbours", "Cosine similarity", "3D graph", 'Dictionary'],
|
91 |
+
menu_icon="cast", default_index=0, orientation="horizontal", styles=styles)
|
92 |
|
93 |
|
94 |
+
# Adding CSS style to remove list-style-type
|
95 |
+
st.markdown("""
|
96 |
+
<style>
|
97 |
+
/* Define a class to remove list-style-type */
|
98 |
+
.no-list-style {
|
99 |
+
list-style-type: none;
|
100 |
+
}
|
101 |
+
</style>
|
102 |
+
""", unsafe_allow_html=True)
|
103 |
|
104 |
|
105 |
|
106 |
+
# Nearest neighbours tab
|
107 |
+
if active_tab == "Nearest neighbours":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# All models in a list
|
110 |
+
eligible_models = ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
|
111 |
+
all_models_words = load_all_models_words()
|
|
|
|
|
112 |
|
113 |
+
with st.container():
|
114 |
+
st.markdown("## Nearest Neighbours")
|
115 |
+
st.markdown('Here you can extract the nearest neighbours to a chosen lemma. Please select one or more time slices and the preferred number of nearest neighbours.')
|
116 |
+
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
117 |
+
if len(target_word) > 0:
|
118 |
+
target_word = target_word[0]
|
119 |
+
|
120 |
+
eligible_models = models_for_word_dict[target_word]
|
|
|
|
|
121 |
|
122 |
+
models = st.multiselect(
|
123 |
+
"Select models to search for neighbours",
|
124 |
+
eligible_models
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
+
n = st.slider("Number of neighbours", 1, 50, 15)
|
127 |
+
|
128 |
+
nearest_neighbours_button = st.button("Find nearest neighbours")
|
|
|
129 |
|
130 |
+
if nearest_neighbours_button:
|
131 |
+
if validate_nearest_neighbours(target_word, n, models) == False:
|
132 |
+
st.error('Please fill in all fields')
|
133 |
+
else:
|
134 |
+
# Rewrite models to list of all loaded models
|
135 |
+
models = load_selected_models(models)
|
136 |
|
137 |
+
nearest_neighbours = get_nearest_neighbours(target_word, n, models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
all_dfs = []
|
140 |
+
|
141 |
+
# Create dataframes
|
142 |
+
for model in nearest_neighbours.keys():
|
143 |
+
st.write(f"### {model}")
|
144 |
+
df = pd.DataFrame(
|
145 |
+
nearest_neighbours[model],
|
146 |
+
columns = ['Word', 'Cosine Similarity']
|
147 |
)
|
148 |
+
|
149 |
+
# Add word occurences to dataframe
|
150 |
+
df['Occurences'] = df['Word'].apply(lambda x: lemma_counts[model][x])
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
all_dfs.append((model, df))
|
155 |
+
st.table(df)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
# Store content in a temporary file
|
159 |
+
tmp_file = store_df_in_temp_file(all_dfs)
|
160 |
+
|
161 |
+
# Open the temporary file and read its content
|
162 |
+
with open(tmp_file, "rb") as file:
|
163 |
+
file_byte = file.read()
|
164 |
+
|
165 |
+
# Create download button
|
166 |
+
st.download_button(
|
167 |
+
"Download results",
|
168 |
+
data=file_byte,
|
169 |
+
file_name = f'nearest_neighbours_{target_word}_TEST.xlsx',
|
170 |
+
mime='application/octet-stream'
|
171 |
+
)
|
172 |
+
|
173 |
|
174 |
+
# Cosine similarity tab
|
175 |
+
elif active_tab == "Cosine similarity":
|
176 |
+
all_models_words = load_all_models_words()
|
177 |
+
|
178 |
+
with st.container():
|
179 |
+
eligible_models_1 = []
|
180 |
+
eligible_models_2 = []
|
181 |
+
st.markdown("## Cosine similarity")
|
182 |
+
st.markdown('Here you can extract the cosine similarity between two lemmas. Please select a time slice for each lemma. You can also calculate the cosine similarity between two vectors of the same lemma in different time slices.')
|
183 |
+
col1, col2 = st.columns(2)
|
184 |
+
col3, col4 = st.columns(2)
|
185 |
+
with col1:
|
186 |
+
word_1 = st.multiselect("Enter a word", placeholder="πατήρ", max_selections=1, options=all_models_words)
|
187 |
+
if len(word_1) > 0:
|
188 |
+
word_1 = word_1[0]
|
189 |
+
eligible_models_1 = models_for_word_dict[word_1]
|
190 |
+
|
191 |
+
with col2:
|
192 |
+
time_slice_1 = st.selectbox("Time slice word 1", options = eligible_models_1)
|
193 |
|
194 |
+
|
195 |
+
with st.container():
|
196 |
+
with col3:
|
197 |
+
word_2 = st.multiselect("Enter a word", placeholder="μήτηρ", max_selections=1, options=all_models_words)
|
198 |
+
if len(word_2) > 0:
|
199 |
+
word_2 = word_2[0]
|
200 |
+
eligible_models_2 = models_for_word_dict[word_2]
|
201 |
+
|
202 |
+
with col4:
|
203 |
+
time_slice_2 = st.selectbox("Time slice word 2", eligible_models_2)
|
204 |
+
|
205 |
+
# Create button for calculating cosine similarity
|
206 |
+
cosine_similarity_button = st.button("Calculate cosine similarity")
|
207 |
+
|
208 |
+
# If the button is clicked, execute calculation
|
209 |
+
if cosine_similarity_button:
|
210 |
+
cosine_simularity_score = get_cosine_similarity(word_1, time_slice_1, word_2, time_slice_2)
|
211 |
+
st.write(cosine_simularity_score)
|
212 |
+
|
213 |
+
# 3D graph tab
|
214 |
+
elif active_tab == "3D graph":
|
215 |
+
st.markdown("## 3D graph")
|
216 |
+
st.markdown('Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.')
|
217 |
+
|
218 |
+
col1, col2 = st.columns(2)
|
219 |
+
|
220 |
+
# Load compressed word list
|
221 |
+
all_models_words = load_all_models_words()
|
222 |
+
|
223 |
with st.container():
|
224 |
+
eligible_models = []
|
225 |
+
with col1:
|
226 |
+
word = st.multiselect("Enter a word", all_models_words, max_selections=1)
|
227 |
+
if len(word) > 0:
|
228 |
+
word = word[0]
|
229 |
+
eligible_models = models_for_word_dict[word]
|
230 |
|
231 |
+
with col2:
|
232 |
+
time_slice = st.selectbox("Time slice", eligible_models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
n = st.slider("Number of words", 1, 50, 15)
|
235 |
|
236 |
+
graph_button = st.button("Create 3D graph")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
if graph_button:
|
239 |
+
time_slice_model = convert_time_name_to_model(time_slice)
|
240 |
+
nearest_neighbours_vectors = get_nearest_neighbours_vectors(word, time_slice_model, n)
|
241 |
+
|
242 |
+
fig, df = make_3d_plot_tSNE(nearest_neighbours_vectors, word, time_slice_model)
|
243 |
+
|
244 |
+
st.plotly_chart(fig)
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
|
249 |
+
|
250 |
+
# Dictionary tab
|
251 |
+
elif active_tab == "Dictionary":
|
252 |
+
|
253 |
+
with st.container():
|
254 |
+
st.markdown('## Dictionary')
|
255 |
+
st.markdown('Search a word in the Liddell-Scott-Jones dictionary (only Greek, no whitespaces).')
|
|
|
256 |
|
257 |
|
258 |
+
all_lemmas = load_all_lemmas()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
+
# query_word = st.multiselect("Search a word in the LSJ dictionary", all_lemmas, max_selections=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
+
query_tag = st_tags(label='',
|
263 |
+
text = '',
|
264 |
+
value = [],
|
265 |
+
suggestions = all_lemmas,
|
266 |
+
maxtags = 1,
|
267 |
+
key = '1'
|
268 |
+
)
|
269 |
|
270 |
+
# If a word has been selected by user
|
271 |
+
if query_tag:
|
272 |
+
st.write(f"### {query_tag[0]}")
|
273 |
+
|
274 |
+
# Display word information
|
275 |
+
if query_tag[0] in lemma_dict:
|
276 |
+
data = lemma_dict[query_tag[0]]
|
277 |
+
elif query_tag[0].capitalize() in lemma_dict: # Some words are capitalized in the dictionary
|
278 |
+
data = lemma_dict[query_tag[0].capitalize()]
|
279 |
+
else:
|
280 |
+
st.error("Word not found in dictionary")
|
281 |
+
|
282 |
+
# Put text in readable format
|
283 |
+
text = format_text(data)
|
284 |
+
|
285 |
+
|
286 |
+
st.markdown(format_text(data), unsafe_allow_html = True)
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
st.markdown("""
|
291 |
+
<style>
|
292 |
+
.tab {
|
293 |
+
display: inline-block;
|
294 |
+
margin-left: 4em;
|
295 |
+
}
|
296 |
+
.tr {
|
297 |
+
font-weight: bold;
|
298 |
+
}
|
299 |
+
.list-class {
|
300 |
+
list-style-type: none;
|
301 |
+
margin-top: 1em;
|
302 |
+
}
|
303 |
+
.primary-indicator {
|
304 |
+
font-weight: bold;
|
305 |
+
font-size: x-large;
|
306 |
+
}
|
307 |
+
.secondary-indicator {
|
308 |
+
font-weight: bold;
|
309 |
+
font-size: large;
|
310 |
+
}
|
311 |
+
.tertiary-indicator {
|
312 |
+
font-weight: bold;
|
313 |
+
font-size: medium;
|
314 |
+
}
|
315 |
+
.quaternary-indicator {
|
316 |
+
font-weight: bold;
|
317 |
+
font-size: medium;
|
318 |
+
}
|
319 |
+
.primary-class {
|
320 |
+
padding-left: 2em;
|
321 |
+
}
|
322 |
+
.secondary-class {
|
323 |
+
padding-left: 4em;
|
324 |
+
}
|
325 |
+
.tertiary-class {
|
326 |
+
padding-left: 6em;
|
327 |
+
}
|
328 |
+
.quaternary-class {
|
329 |
+
padding-left: 8em;
|
330 |
+
}
|
331 |
+
</style>
|
332 |
+
""", unsafe_allow_html=True)
|
333 |
+
|
334 |
+
|
335 |
+
# About tab
|
336 |
+
elif active_tab == "About":
|
337 |
+
st.markdown("""
|
338 |
+
## About
|
339 |
+
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nec purus nec nunc ultricies ultricies.
|
340 |
+
""")
|
341 |
+
|
342 |
+
|
343 |
+
elif active_tab == "FAQ":
|
344 |
+
st.markdown("""
|
345 |
+
## FAQ
|
346 |
+
""")
|
347 |
+
|
348 |
+
with st.expander('''**Which models is this interface based on?**'''):
|
349 |
+
st.write(
|
350 |
+
"This interface is based on five language models. \
|
351 |
+
Language models are statistical models of language, \
|
352 |
+
which store statistical information about word co-occurrence during the training phase. \
|
353 |
+
During training they process a corpus of texts in the target language(s). \
|
354 |
+
Once trained, models can be used to extract information about the language \
|
355 |
+
(in this interface, we focus on the extraction of semantic information) or to perform specific linguistic tasks. \
|
356 |
+
The models on which this interface is based are Word Embedding models."
|
357 |
+
)
|
358 |
|
359 |
+
with st.expander('''**Which corpus was used to train the models?**'''):
|
360 |
+
st.write(
|
361 |
+
"The five models on which this interface is based were trained on five slices of the Diorisis Ancient Greek Corpus (Vatri & McGillivray 2018)."
|
362 |
+
)
|
363 |
|
364 |
|
365 |
+
if selected == "About":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
st.markdown("""
|
367 |
## About
|
368 |
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nec purus nec nunc ultricies ultricies.
|
369 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
|
|
|
|
|
372 |
|
373 |
+
streamlit_style = """
|
374 |
+
<style>
|
375 |
+
html, body {
|
376 |
+
font-family: 'Helvetica';
|
377 |
+
}
|
378 |
+
</style>
|
379 |
+
"""
|
380 |
+
|
381 |
+
st.markdown(streamlit_style, unsafe_allow_html=True)
|
images/AGALMA_logo.png
ADDED