Mark7549 commited on
Commit
2ba8555
1 Parent(s): 9ec7b0a

updated description for all tabs

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -135,7 +135,7 @@ if selected == "App":
135
  st.markdown(
136
  'Here you can extract the nearest neighbours to a chosen lemma. \
137
  Please select one or more time slices and the preferred number of nearest neighbours. \
138
- Only type in Greek, with correct spirits and accents.'
139
  )
140
  target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
141
  if len(target_word) > 0:
@@ -207,7 +207,7 @@ if selected == "App":
207
  'Here you can extract the cosine similarity between two lemmas. \
208
  Please select a time slice for each lemma. \
209
  You can also calculate the cosine similarity between two vectors of the same lemma in different time slices. \
210
- Only type in Greek, with correct spirits and accents.'
211
  )
212
  col1, col2 = st.columns(2)
213
  col3, col4 = st.columns(2)
@@ -244,7 +244,7 @@ if selected == "App":
244
  st.markdown("## 3D graph")
245
  st.markdown('''
246
  Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.\
247
- Only type in Greek, with correct spirits and accents. \
248
 
249
 
250
  **NB**: the 3D representations are reductions of the multi-dimensional representations created by the models. \
@@ -289,7 +289,7 @@ if selected == "App":
289
 
290
  with st.container():
291
  st.markdown('## Dictionary')
292
- st.markdown('Search a word in the Liddell-Scott-Jones dictionary. Only type in Greek, with correct spirits and accents. ')
293
 
294
 
295
  all_lemmas = load_all_lemmas()
 
135
  st.markdown(
136
  'Here you can extract the nearest neighbours to a chosen lemma. \
137
  Please select one or more time slices and the preferred number of nearest neighbours. \
138
+ **Only type in Greek, with correct spirits and accents**.'
139
  )
140
  target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
141
  if len(target_word) > 0:
 
207
  'Here you can extract the cosine similarity between two lemmas. \
208
  Please select a time slice for each lemma. \
209
  You can also calculate the cosine similarity between two vectors of the same lemma in different time slices. \
210
+ **Only type in Greek, with correct spirits and accents**. '
211
  )
212
  col1, col2 = st.columns(2)
213
  col3, col4 = st.columns(2)
 
244
  st.markdown("## 3D graph")
245
  st.markdown('''
246
  Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.\
247
+ **Only type in Greek, with correct spirits and accents**. \
248
 
249
 
250
  **NB**: the 3D representations are reductions of the multi-dimensional representations created by the models. \
 
289
 
290
  with st.container():
291
  st.markdown('## Dictionary')
292
+ st.markdown('Search a word in the Liddell-Scott-Jones dictionary. **Only type in Greek, with correct spirits and accents**. ')
293
 
294
 
295
  all_lemmas = load_all_lemmas()