JRQi's picture
Update app.py
6b3da83
raw
history blame
16.9 kB
import gradio as gr
import requests
import random
import time
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from game1 import read1, func1, interpre1, func1_written
from game2 import func2
from game3 import read3, func3, interpre3, func3_written
def ret_en():
return 'en'
def ret_nl():
return 'nl'
# def reset_scores():
# data = pd.DataFrame(
# {
# "Role": ["AI πŸ€–", "HUMAN πŸ™‹"],
# "Scores": [0, 0],
# }
# )
# tot_scores_2 = ''' #### <p style="text-align: center;"> Today's Scores:</p>
# #### <p style="text-align: center;"> πŸ€– Machine &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; VS &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; Human πŸ™‹ </p>'''
# # scroe_human = ''' # Human: ''' + str(int(0))
# # scroe_robot = ''' # Robot: ''' + str(int(0))
# # tooltip=["Role", "Scores"],
# return 0, 0, tot_scores
def reset_modules():
res_empty = {"original": "", "interpretation": []}
return res_empty, 0, 0, [], ""
# theme = gr.themes.Default(text_size=gr.themes.sizes.text_md).set(
# input_text_size="24px",
# )
theme = gr.themes.Default(
primary_hue="blue",
).set(
border_color_accent_subdued='*border_color_accent',
link_text_color='*primary_600',
block_shadow='none',
block_shadow_dark='none',
form_gap_width='0px',
checkbox_label_background_fill='*button_secondary_background_fill',
checkbox_label_background_fill_dark='*button_secondary_background_fill',
checkbox_label_background_fill_hover='*button_secondary_background_fill_hover',
checkbox_label_background_fill_hover_dark='*button_secondary_background_fill_hover',
checkbox_label_shadow='none',
error_background_fill_dark='*background_fill_primary',
input_background_fill='*neutral_100',
input_background_fill_dark='*neutral_700',
input_border_width='0px',
input_border_width_dark='0px',
input_shadow='none',
input_shadow_dark='none',
input_shadow_focus='*input_shadow',
input_shadow_focus_dark='*input_shadow',
stat_background_fill='*primary_300',
stat_background_fill_dark='*primary_500',
button_shadow='none',
button_shadow_active='none',
button_shadow_hover='none',
button_transition='background-color 0.2s ease',
button_primary_background_fill='*primary_200',
button_primary_background_fill_dark='*primary_700',
button_primary_background_fill_hover='*button_primary_background_fill',
button_primary_background_fill_hover_dark='*button_primary_background_fill',
button_primary_border_color_dark='*primary_600',
button_secondary_background_fill='*neutral_200',
button_secondary_background_fill_dark='*neutral_600',
button_secondary_background_fill_hover='*button_secondary_background_fill',
button_secondary_background_fill_hover_dark='*button_secondary_background_fill',
button_cancel_background_fill='*button_secondary_background_fill',
button_cancel_background_fill_dark='*button_secondary_background_fill',
button_cancel_background_fill_hover='*button_cancel_background_fill',
button_cancel_background_fill_hover_dark='*button_cancel_background_fill',
button_cancel_border_color='*button_secondary_border_color',
button_cancel_border_color_dark='*button_secondary_border_color',
button_cancel_text_color='*button_secondary_text_color',
button_cancel_text_color_dark='*button_secondary_text_color'
)
# theme = gr.themes.Default(text_size=gr.themes.sizes.text_md)
with gr.Blocks(theme=theme) as demo:
pre_load_1 = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
pre_load_2 = pipeline("text-classification", model='DTAI-KULeuven/robbert-v2-dutch-sentiment')
pre_load_3 = pipeline("text-classification", model='distilbert-base-uncased-finetuned-sst-2-english')
pre_load_4 = pipeline("text-classification", model="padmajabfrl/Gender-Classification")
num1 = gr.Number(value=0, container=False, show_label=False, visible=False)
num2 = gr.Number(value=0, container=False, show_label=False, visible=False)
num3 = gr.Number(value=0, container=False, show_label=False, visible=False)
num4 = gr.Number(value=0, container=False, show_label=False, visible=False)
with gr.Row():
with gr.Column():
placeholder = gr.Markdown(
''' ## Welcome to the Language Model Explanation Challenge! <br />
#### Language Models are powerful AI tools to understand and generate human language.<br />
#### However, they sometimes make mistakes... and it's hard to know why!<br />
#### Choose one of the tasks below ... and start to play!'''
)
with gr.Column():
# gr.Markdown(
# '''
# ### Built by [ADD GroNLP logo here]
# '''
# )
gr.Image('logo.png', height=50, width=700, min_width=80, show_label=False, show_share_button=False, interactive=False, container=False)
placeholder = gr.Markdown(
'''
Are *humans* or *machines* better at understanding language?<br />
&rarr; Play a game against AI to find out!<br />
Does AI think like you or not at all?<br />
&rarr; Check out the color highlighting to see which parts of the sentence are more important for the machine.<br />
Can you outsmart the AI?<br />
&rarr; Try to write a text that will trick it into the wrong decision<br />
'''
)
with gr.Tab("Like or Dislike"):
text_en = gr.Textbox(label="", value="en", visible=False)
text_nl = gr.Textbox(label="", value="nl", visible=False)
lang_selected = gr.Textbox(label="", value="", visible=False)
num_selected_1 = gr.Number(value=0, container=False, show_label=False, visible=False)
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
sample_button_en = gr.Button("Click to get a review in English.", size='sm')
# gr.Markdown(''' <p style="text-align: center;"> or </p> ''')
sample_button_nl = gr.Button("Click to get a review in Dutch.", size='sm')
input_text = gr.Textbox(label="Review:", value="HELLO! Hallo!", visible=False, container=False)
interpretation1 = gr.components.Interpretation(input_text)
slider_1_1 = gr.Slider(label="Your rating: Dislike(0) β€”> Like(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
user_important = gr.Textbox(label="Which words are your guesses based on?", placeholder="Enter words that you think are important for the task")
with gr.Column(scale=1):
gr.Markdown(
''' ## Like or Dislike
You're given a short review of a movie, book or restaurant.
The goal of this game is to guess how *positive* the review is, from 0 (=extremely bad) to 10 (=fantastic).
* Step 1: Get an English or Dutch review and guess the corresponding score.
* Step 2: Check the score guessed by AI. Who gets the most correct answer wins.
* Step 3: Check the word highlighting to understand how AI made its decision.
'''
)
# tot_scores_1 = gr.Markdown(
# ''' #### <p style="text-align: center;"> Today's Scores:</p>
# #### <p style="text-align: center;"> πŸ€– Machine &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; VS &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; Human πŸ™‹ </p>'''
# )
tot_scores_1 = gr.Markdown(
''' #### <p style="text-align: center;"> Today's scores: &ensp; &ensp; πŸ€– Machine &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; VS &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; Human πŸ™‹ </p>'''
)
with gr.Row():
with gr.Column(scale=2):
chat_button_1 = gr.Button("Click to see AI's rating", size='sm')
slider_1_2 = gr.Slider(label="AI rating: Dislike(0) β€”> Like(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
interpre_button = gr.Button("See how AI got its rating", size='sm')
placeholder_text = gr.Textbox(label="Red higlights: Negative / Blue higlights: Positive", value="HELLO! Hallo!", visible=False)
interpretation2 = gr.components.Interpretation(placeholder_text)
with gr.Column(scale=1):
chatbot1 = gr.Chatbot(height=230, min_width=50, container=False) # height=300
####################################################################################################
gr.Markdown(''' *** ''')
gr.Markdown(
''' # Now try with your own review!
'''
)
with gr.Row():
with gr.Column(scale=2):
text_written = gr.Textbox(label="Review: ", placeholder="Enter your own review about a movie/restaurant/book.", visible=True)
# image_1_3 = gr.Image('icon_user.png', height=80, width=80, min_width=80, show_label=False, show_share_button=False, interactive=False)
slider_1_3 = gr.Slider(label="Your rating: Dislike(0) β€”> Like(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
lang_written = gr.Radio(["English", "Dutch"], label="Language:", info="In which language is the review written?")
chat_button_2 = gr.Button("Click to see AI's rating", size='sm')
placeholder_written_text = gr.Textbox(label="Red higlights: Negative / Blue higlights: Positive", value="HELLO! Hallo!", visible=False)
interpretation4 = gr.components.Interpretation(placeholder_written_text)
slider_1_4 = gr.Slider(label="AI rating: Dislike(0) β€”> Like(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
with gr.Column(scale=1):
chatbot2 = gr.Chatbot(height=350, min_width=50, container=False) # height=300
sample_button_en.click(read1, inputs=[text_en, num_selected_1], outputs=[interpretation1, lang_selected, num_selected_1])
sample_button_nl.click(read1, inputs=[text_nl, num_selected_1], outputs=[interpretation1, lang_selected, num_selected_1])
num_selected_1.change(reset_modules, outputs=[interpretation2, slider_1_1, slider_1_2, chatbot1, user_important])
chat_button_1.click(func1, inputs=[lang_selected, num_selected_1, slider_1_1, num1, num2, user_important], outputs=[slider_1_2, chatbot1, num1, num2, tot_scores_1])
interpre_button.click(interpre1, inputs=[lang_selected, num_selected_1], outputs=[interpretation2])
chat_button_2.click(func1_written, inputs=[text_written, slider_1_3, lang_written], outputs=[interpretation4, slider_1_4, chatbot2])
# with gr.Tab("Human or Machine"):
# with gr.Row():
# text_input_2 = gr.Textbox()
# text_output_2 = gr.Label()
# text_button_2 = gr.Button("Check")
with gr.Tab("Male or Female"):
num_selected_3 = gr.Number(value=0, container=False, show_label=False, visible=False)
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
# gr.Markdown(''' <p style="text-align: center;"> or </p> ''')
sample_button_en_3 = gr.Button("Click to get a sentence", size='sm')
input_text_mf = gr.Textbox(label="Sentence:", value="HELLO! Hallo!", visible=False, container=False)
interpretation_mf_1 = gr.components.Interpretation(input_text_mf)
slider_3_1 = gr.Slider(label="Your guess of author gender: Male(0) β€”β€”> Female(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
user_important_mf = gr.Textbox(label="Which words are your guesses based on?", placeholder="Enter words that you think are important for the task")
with gr.Column(scale=1):
gr.Markdown(
''' ## Male or Female
You're given a sentence written by a person.
The goal of the game is to guess the gender of that person, from 0 (=Male) to 10 (=Female).
- Step 1: Get a sentence and guess the gender of its author.
- Step 2: Check the gender guessed by AI. Who gets the most correct answer wins.
- Step 3: Check the word highlighting to understand how AI made its decision.
'''
)
# tot_scores_2 = gr.Markdown(
# ''' #### <p style="text-align: center;"> Today's Scores:</p>
# #### <p style="text-align: center;"> πŸ€– Machine &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; VS &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; Human πŸ™‹ </p>'''
# )
tot_scores_2 = gr.Markdown(
''' #### <p style="text-align: center;"> Today's scores: &ensp; &ensp; πŸ€– Machine &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; VS &ensp; <span style="color: red;">''' + str(int(0)) + '''</span> &ensp; Human πŸ™‹ </p>'''
)
with gr.Row():
with gr.Column(scale=2):
chat_button_mf = gr.Button("Click to see AI's guess", size='sm')
slider_3_2 = gr.Slider(label="AI guess on author gender: Male(0) β€”β€”> Female(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
interpre_button_mf = gr.Button("See how AI made its guess", size='sm')
placeholder_text_mf = gr.Textbox(label="Red higlights: Female / Blue higlights: Male", value="HELLO! Hallo!", visible=False)
interpretation_mf_2 = gr.components.Interpretation(placeholder_text_mf)
with gr.Column(scale=1):
chatbot_mf_1 = gr.Chatbot(height=230, min_width=50, container=False)
####################################################################################################
gr.Markdown(''' *** ''')
gr.Markdown(
''' # Now try with your own sentence!
'''
)
with gr.Row():
with gr.Column(scale=2):
text_written_mf = gr.Textbox(label="Sentence: ", placeholder="Enter a sentence.", visible=True)
slider_3_3 = gr.Slider(label="Your guess of author gender: Male(0) β€”β€”> Female(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
# slider_3_3 = gr.Slider(label="See any gender-biased words in your sentence? Give them a score: Male(0) β€”β€”> Female(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
chat_button_mf_2 = gr.Button("Click to see AI's guess", size='sm')
placeholder_written_text_mf = gr.Textbox(label="Red higlights: Female / Blue higlights: Male", value="HELLO! Hallo!", visible=False)
interpretation_mf_4 = gr.components.Interpretation(placeholder_written_text_mf)
slider_3_4 = gr.Slider(label="AI guess on author gender: Male(0) β€”β€”> Female(10)", maximum=10, container=True, min_width=200, height=80, show_label=True, interactive=True)
with gr.Column(scale=1):
chatbot_mf_2 = gr.Chatbot(height=350, min_width=50, container=False) # height=300
sample_button_en_3.click(read3, inputs=[num_selected_3], outputs=[interpretation_mf_1, num_selected_3])
num_selected_3.change(reset_modules, outputs=[interpretation_mf_2, slider_3_1, slider_3_2, chatbot_mf_1, user_important_mf])
chat_button_mf.click(func3, inputs=[num_selected_3, slider_3_1, num3, num4, user_important_mf], outputs=[slider_3_2, chatbot_mf_1, num3, num4, tot_scores_2])
interpre_button_mf.click(interpre3, inputs=[num_selected_3], outputs=[interpretation_mf_2])
chat_button_mf_2.click(func3_written, inputs=[text_written_mf, slider_3_3], outputs=[interpretation_mf_4, slider_3_4, chatbot_mf_2])
# if __name__ == "__main__":
demo.launch()