Spaces:
Runtime error
Runtime error
Update game1.py
Browse files
game1.py
CHANGED
@@ -114,7 +114,8 @@ def func1(lang_selected, num_selected, human_predict, num1, num2, user_important
|
|
114 |
# Use a pipeline as a high-level helper
|
115 |
from transformers import pipeline
|
116 |
|
117 |
-
|
|
|
118 |
output = classifier([text['text']])
|
119 |
|
120 |
star2num = {
|
@@ -322,7 +323,8 @@ def func1_written(text_written, human_predict, lang_written):
|
|
322 |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
323 |
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
324 |
|
325 |
-
|
|
|
326 |
|
327 |
output = classifier([text_written])
|
328 |
|
@@ -353,10 +355,12 @@ def func1_written(text_written, human_predict, lang_written):
|
|
353 |
import shap
|
354 |
|
355 |
# sentiment_classifier = pipeline("text-classification", return_all_scores=True)
|
|
|
|
|
356 |
if lang_written == "Dutch":
|
357 |
-
sentiment_classifier = pipeline("text-classification", model='DTAI-KULeuven/robbert-v2-dutch-sentiment', return_all_scores=True)
|
358 |
else:
|
359 |
-
sentiment_classifier = pipeline("text-classification", model='distilbert-base-uncased-finetuned-sst-2-english', return_all_scores=True)
|
360 |
|
361 |
explainer = shap.Explainer(sentiment_classifier)
|
362 |
|
|
|
114 |
# Use a pipeline as a high-level helper
|
115 |
from transformers import pipeline
|
116 |
|
117 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
118 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, device=device)
|
119 |
output = classifier([text['text']])
|
120 |
|
121 |
star2num = {
|
|
|
323 |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
324 |
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
325 |
|
326 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
327 |
+
classifier = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment", device=device)
|
328 |
|
329 |
output = classifier([text_written])
|
330 |
|
|
|
355 |
import shap
|
356 |
|
357 |
# sentiment_classifier = pipeline("text-classification", return_all_scores=True)
|
358 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
359 |
+
|
360 |
if lang_written == "Dutch":
|
361 |
+
sentiment_classifier = pipeline("text-classification", model='DTAI-KULeuven/robbert-v2-dutch-sentiment', return_all_scores=True, device=device)
|
362 |
else:
|
363 |
+
sentiment_classifier = pipeline("text-classification", model='distilbert-base-uncased-finetuned-sst-2-english', return_all_scores=True, device=device)
|
364 |
|
365 |
explainer = shap.Explainer(sentiment_classifier)
|
366 |
|