Spaces:
Runtime error
Runtime error
import requests | |
import random | |
import time | |
import pandas as pd | |
import gradio as gr | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import pipeline | |
import shap | |
def read1(lang, num_selected_former): | |
if lang in ['en']: | |
fname = 'data1_en.txt' | |
else: | |
fname = 'data1_nl_10.txt' | |
with open(fname, encoding='utf-8') as f: | |
content = f.readlines() | |
index_selected = random.randint(0,len(content)/2-1) | |
while index_selected == num_selected_former: | |
index_selected = random.randint(0,len(content)/2-1) | |
text = eval(content[index_selected*2]) | |
interpretation = eval(content[int(index_selected*2+1)]) | |
if lang == 'en': | |
min_len = 4 | |
else: | |
min_len = 2 | |
tokens = [i[0] for i in interpretation] | |
tokens = tokens[1:-1] | |
while len(tokens) <= min_len or '\\' in text['text'] or '//' in text['text']: | |
index_selected = random.randint(0,len(content)/2-1) | |
text = eval(content[int(index_selected*2)]) | |
res_tmp = [(i, 0) for i in text['text'].split(' ')] | |
res = {"original": text['text'], "interpretation": res_tmp} | |
# res_empty = {"original": "", "interpretation": []} | |
# res = [] | |
# res.append(("P", "+")) | |
# res.append(("/", None)) | |
# res.append(("N", "-")) | |
# res.append(("Review:", None)) | |
# for i in text['text'].split(' '): | |
# res.append((i, None)) | |
# res_empty = None | |
# checkbox_update = gr.CheckboxGroup.update(choices=tokens, value=None) | |
return res, lang, index_selected | |
def read1_written(lang): | |
if lang in ['en']: | |
fname = 'data1_en.txt' | |
else: | |
fname = 'data1_nl_10.txt' | |
with open(fname, encoding='utf-8') as f: | |
content = f.readlines() | |
index_selected = random.randint(0,len(content)/2-1) | |
text = eval(content[index_selected*2]) | |
if lang == 'en': | |
min_len = 4 | |
else: | |
min_len = 2 | |
while (len(text['text'].split(' '))) <= min_len or '\\' in text['text'] or '//' in text['text']: | |
# while (len(text['text'].split(' '))) <= min_len: | |
index_selected = random.randint(0,len(content)/2-1) | |
text = eval(content[int(index_selected*2)]) | |
# interpretation = [(i, 0) for i in text['text'].split(' ')] | |
# res = {"original": text['text'], "interpretation": interpretation} | |
# print(res) | |
return text['text'] | |
def func1(lang_selected, num_selected, human_predict, num1, num2, user_important): | |
chatbot = [] | |
# num1: Human score; num2: AI score | |
if lang_selected in ['en']: | |
fname = 'data1_en.txt' | |
else: | |
fname = 'data1_nl_10.txt' | |
with open(fname) as f: | |
content = f.readlines() | |
text = eval(content[int(num_selected*2)]) | |
interpretation = eval(content[int(num_selected*2+1)]) | |
if lang_selected in ['en']: | |
golden_label = text['label'] * 2.5 | |
else: | |
golden_label = text['label'] * 10 | |
''' | |
# (START) API version -- quick | |
API_URL = "https://api-inference.huggingface.co/models/nlptown/bert-base-multilingual-uncased-sentiment" | |
# API_URL = "https://api-inference.huggingface.co/models/cmarkea/distilcamembert-base-sentiment" | |
headers = {"Authorization": "Bearer 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"} | |
response = requests.post(API_URL, headers=headers, json=text['text']) | |
output = response.json() | |
# result = dict() | |
star2num = { | |
"5 stars": 100, | |
"4 stars": 75, | |
"3 stars": 50, | |
"2 stars": 25, | |
"1 star": 0, | |
} | |
print(output) | |
out = output[0][0] | |
# (END) API version | |
''' | |
# (START) off-the-shelf version -- slow at the beginning | |
# Load model directly | |
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") | |
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") | |
# Use a pipeline as a high-level helper | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
print(device) | |
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, device=device) | |
output = classifier([text['text']]) | |
star2num = { | |
"5 stars": 10, | |
"4 stars": 7.5, | |
"3 stars": 5, | |
"2 stars": 2.5, | |
"1 star": 0, | |
} | |
print(output) | |
out = output[0] | |
# (END) off-the-shelf version | |
ai_predict = star2num[out['label']] | |
# result[label] = out['score'] | |
user_select = "You focused on " | |
flag_select = False | |
if user_important == "": | |
user_select += "nothing. Interesting! " | |
else: | |
user_select += "'" + user_important + "'. " | |
# for i in range(len(user_marks)): | |
# if user_marks[i][1] != None and h1[i][0] not in ["P", "N"]: | |
# flag_select = True | |
# user_select += "'" + h1[i][0] + "'" | |
# if i == len(h1) - 1: | |
# user_select += ". " | |
# else: | |
# user_select += ", " | |
# if not flag_select: | |
# user_select += "nothing. Interesting! " | |
user_select += "Wanna see how the AI made the guess? Click here. ⬅️" | |
if lang_selected in ['en']: | |
# 0 1 2 3 4 5 6 7 8 9 10 | |
if ai_predict == golden_label: | |
if abs(human_predict - golden_label) <= 2: # Both correct | |
golden_label = int((human_predict + ai_predict) / 2) | |
ai_predict = golden_label | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Congratulations! 🎉 Both of you get the correct answer!", user_select)) | |
num1 += 1 | |
num2 += 1 | |
else: | |
golden_label += random.randint(-1, 1) * 0.5 | |
while golden_label > 10 or golden_label < 0: | |
golden_label += random.randint(-1, 1) * 0.5 | |
golden_label = int(golden_label) | |
ai_predict = golden_label | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry.. AI wins in this round.", user_select)) | |
num2 += 1 | |
else: | |
if abs(human_predict - golden_label) < abs(ai_predict - golden_label): | |
if abs(human_predict - golden_label) < 2: | |
golden_label = int((golden_label + human_predict) / 2) | |
ai_predict += random.randint(-1, 1) * 0.5 | |
ai_predict = int(ai_predict) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Great! 🎉 You are closer to the answer and better than AI!", user_select)) | |
num1 += 1 | |
else: | |
golden_label = int(golden_label) | |
ai_predict = int(ai_predict) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Both wrong... Maybe next time you'll win!", user_select)) | |
else: | |
golden_label = int(golden_label) | |
ai_predict = int(ai_predict) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry.. No one gets the correct answer. But nice try! 😉", user_select)) | |
else: | |
if golden_label == 10: | |
if ai_predict > 5 and human_predict > 5: | |
golden_label = int((human_predict + ai_predict)/2) + random.randint(-1, 1) | |
while golden_label > 10: | |
golden_label = int((human_predict + ai_predict)/2) + random.randint(-1, 1) | |
ai_predict = int((golden_label + ai_predict) / 2) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Congratulations! 🎉 Both of you get the correct answer!", user_select)) | |
num1 += 1 | |
num2 += 1 | |
elif ai_predict > 5 and human_predict <= 5: | |
golden_label -= random.randint(0, 3) | |
ai_predict = 7 + random.randint(-1, 2) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry.. AI wins in this round.", user_select)) | |
num2 += 1 | |
elif ai_predict <= 5 and human_predict > 5: | |
golden_label = human_predict + random.randint(-1, 1) | |
while golden_label > 10: | |
golden_label = human_predict + random.randint(-1, 1) | |
ai_predict = int(ai_predict) | |
golden_label = int(golden_label) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Great! 🎉 You are close to the answer and better than AI!", user_select)) | |
num1 += 1 | |
else: | |
golden_label = int(golden_label) | |
ai_predict = int(ai_predict) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry... No one gets the correct answer. But nice try! 😉", user_select)) | |
else: | |
if ai_predict < 5 and human_predict < 5: | |
golden_label = int((human_predict + ai_predict)/2) + random.randint(-1, 1) | |
while golden_label < 0: | |
golden_label = int((human_predict + ai_predict)/2) + random.randint(-1, 1) | |
ai_predict = int((golden_label + ai_predict) / 2) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Congratulations! 🎉 Both of you get the correct answer!", user_select)) | |
num1 += 1 | |
num2 += 1 | |
elif ai_predict < 5 and human_predict >= 5: | |
golden_label += random.randint(0, 3) | |
ai_predict = 3 + random.randint(-2, 1) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry.. AI wins in this round.", user_select)) | |
num2 += 1 | |
elif ai_predict >= 5 and human_predict < 5: | |
golden_label = human_predict + random.randint(-1, 1) | |
while golden_label < 0: | |
golden_label = human_predict + random.randint(-1, 1) | |
ai_predict = int(ai_predict) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Great! 🎉 You are close to the answer and better than AI!", user_select)) | |
num1 += 1 | |
else: | |
golden_label = int(golden_label) | |
ai_predict = int(ai_predict) | |
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry... No one gets the correct answer. But nice try! 😉", user_select)) | |
# data = pd.DataFrame( | |
# { | |
# "Role": ["AI 🤖", "HUMAN 👨👩"], | |
# "Scores": [num2, num1], | |
# } | |
# ) | |
# scroe_human = ''' # Human: ''' + str(int(num1)) | |
# scroe_robot = ''' # Robot: ''' + str(int(num2)) | |
# tot_scores = ''' ### <p style="text-align: center;"> 🤖 Machine   ''' + str(int(num2)) + '''   VS   ''' + str(int(num1)) + '''   Human 👨👩 </p>''' | |
tot_scores = ''' | |
#### <p style="text-align: center;"> Today's Scores:</p> | |
#### <p style="text-align: center;"> 🤖 Machine   <span style="color: red;">''' + str(int(num2)) + '''</span>   VS   <span style="color: green;">''' + str(int(num1)) + '''</span>   Human 🙋 </p>''' | |
# num_tmp = max(num1, num2) | |
# y_lim_upper = (int((num_tmp + 3)/10)+1) * 10 | |
# figure = gr.BarPlot.update( | |
# data, | |
# x="Role", | |
# y="Scores", | |
# color="Role", | |
# vertical=False, | |
# y_lim=[0,y_lim_upper], | |
# color_legend_position='none', | |
# height=250, | |
# width=500, | |
# show_label=False, | |
# container=False, | |
# ) | |
# tooltip=["Role", "Scores"], | |
return ai_predict, chatbot, num1, num2, tot_scores | |
def interpre1(lang_selected, num_selected): | |
if lang_selected in ['en']: | |
fname = 'data1_en.txt' | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
else: | |
fname = 'data1_nl_10.txt' | |
tokenizer = AutoTokenizer.from_pretrained("DTAI-KULeuven/robbert-v2-dutch-sentiment") | |
with open(fname) as f: | |
content = f.readlines() | |
text = eval(content[int(num_selected*2)]) | |
interpretation = eval(content[int(num_selected*2+1)]) | |
encodings = tokenizer(text['text'], return_offsets_mapping=True) | |
print(encodings['offset_mapping']) | |
is_subword = [False, False] | |
for i in range(2, len(encodings['offset_mapping'])): | |
if encodings['offset_mapping'][i][0] == encodings['offset_mapping'][i-1][1]: | |
is_subword.append(True) | |
else: | |
is_subword.append(False) | |
print(is_subword) | |
interpretation_combined = [] | |
index_tmp = 0 | |
while index_tmp < (len(interpretation) - 1): | |
if not is_subword[index_tmp+1]: | |
interpretation_combined.append(interpretation[index_tmp]) | |
index_tmp += 1 | |
else: | |
text_combined = interpretation[index_tmp][0] | |
score_combinded = interpretation[index_tmp][1] | |
length = 1 | |
while is_subword[index_tmp+length]: | |
text_combined += interpretation[index_tmp+length][0] | |
score_combinded += interpretation[index_tmp+length][1] | |
length += 1 | |
interpretation_combined.append((text_combined, score_combinded/length)) | |
index_tmp += length | |
interpretation_combined.append(('', 0.0)) | |
print(interpretation_combined) | |
res = {"original": text['text'], "interpretation": interpretation_combined} | |
# pos = [] | |
# neg = [] | |
# res = [] | |
# for i in interpretation: | |
# if i[1] > 0: | |
# pos.append(i[1]) | |
# elif i[1] < 0: | |
# neg.append(i[1]) | |
# else: | |
# continue | |
# median_pos = np.median(pos) | |
# median_neg = np.median(neg) | |
# res.append(("P", "+")) | |
# res.append(("/", None)) | |
# res.append(("N", "-")) | |
# res.append(("Review:", None)) | |
# for i in interpretation: | |
# if i[1] > median_pos: | |
# res.append((i[0], "+")) | |
# elif i[1] < median_neg: | |
# res.append((i[0], "-")) | |
# else: | |
# res.append((i[0], None)) | |
return res | |
def func1_written(text_written, human_predict, lang_written): | |
chatbot = [] | |
# num1: Human score; num2: AI score | |
''' | |
# (START) API version | |
API_URL = "https://api-inference.huggingface.co/models/nlptown/bert-base-multilingual-uncased-sentiment" | |
# API_URL = "https://api-inference.huggingface.co/models/cmarkea/distilcamembert-base-sentiment" | |
headers = {"Authorization": "Bearer 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"} | |
response = requests.post(API_URL, headers=headers, json=text_written) | |
output = response.json() | |
# result = dict() | |
star2num = { | |
"5 stars": 100, | |
"4 stars": 75, | |
"3 stars": 50, | |
"2 stars": 25, | |
"1 star": 0, | |
} | |
out = output[0][0] | |
# (END) API version | |
''' | |
# (START) off-the-shelf version | |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") | |
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
classifier = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment", device=device) | |
output = classifier([text_written]) | |
star2num = { | |
"5 stars": 10, | |
"4 stars": 7.5, | |
"3 stars": 5, | |
"2 stars": 2.5, | |
"1 star": 0, | |
} | |
print(output) | |
out = output[0] | |
# (END) off-the-shelf version | |
ai_predict = star2num[out['label']] | |
# result[label] = out['score'] | |
if abs(ai_predict - human_predict) <= 2: | |
ai_predict = int(ai_predict) | |
chatbot.append(("AI gives it a close score! 🎉", "⬅️ Feel free to try another one! This time let’s see if you can trick the AI into giving a wrong rating. ⬅️")) | |
else: | |
ai_predict += int(random.randint(-1, 1)) | |
while ai_predict > 10 or ai_predict < 0: | |
ai_predict += int(random.randint(-1, 1)) | |
chatbot.append(("AI thinks in a different way from human. 😉", "⬅️ Feel free to try another one! ⬅️")) | |
# sentiment_classifier = pipeline("text-classification", return_all_scores=True) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
if lang_written == "Dutch": | |
sentiment_classifier = pipeline("text-classification", model='DTAI-KULeuven/robbert-v2-dutch-sentiment', return_all_scores=True, device=device) | |
tokenizer = AutoTokenizer.from_pretrained("DTAI-KULeuven/robbert-v2-dutch-sentiment") | |
else: | |
sentiment_classifier = pipeline("text-classification", model='distilbert-base-uncased-finetuned-sst-2-english', return_all_scores=True, device=device) | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
explainer = shap.Explainer(sentiment_classifier) | |
shap_values = explainer([text_written]) | |
interpretation = list(zip(shap_values.data[0], shap_values.values[0, :, 1])) | |
encodings = tokenizer(text_written, return_offsets_mapping=True) | |
print(encodings['offset_mapping']) | |
is_subword = [False, False] | |
for i in range(2, len(encodings['offset_mapping'])): | |
if encodings['offset_mapping'][i][0] == encodings['offset_mapping'][i-1][1]: | |
is_subword.append(True) | |
else: | |
is_subword.append(False) | |
print(is_subword) | |
interpretation_combined = [] | |
index_tmp = 0 | |
while index_tmp < (len(interpretation) - 1): | |
if not is_subword[index_tmp+1]: | |
interpretation_combined.append(interpretation[index_tmp]) | |
index_tmp += 1 | |
else: | |
text_combined = interpretation[index_tmp][0] | |
score_combinded = interpretation[index_tmp][1] | |
length = 1 | |
while is_subword[index_tmp+length]: | |
text_combined += interpretation[index_tmp+length][0] | |
score_combinded += interpretation[index_tmp+length][1] | |
length += 1 | |
interpretation_combined.append((text_combined, score_combinded/length)) | |
index_tmp += length | |
interpretation_combined.append(('', 0.0)) | |
print(interpretation_combined) | |
res = {"original": text_written, "interpretation": interpretation_combined} | |
print(res) | |
return res, ai_predict, chatbot | |