Spaces:
Runtime error
Runtime error
import gradio as gr | |
import openai | |
from typing import Iterator, TextIO | |
import tempfile | |
from pydub import AudioSegment | |
def audio_from_file(filename: str) -> AudioSegment: | |
try: | |
audio = AudioSegment.from_file(filename) | |
except FileNotFoundError: | |
raise ValueError( | |
f"Cannot load audio from file: `{filename}` not found. Do you forgot to install `ffmpeg`." | |
) | |
return audio | |
def format_timestamp(seconds: float, always_include_hours: bool = False): | |
assert seconds >= 0, "non-negative timestamp expected" | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours}:" if always_include_hours or hours > 0 else "" | |
return f"{hours_marker}{minutes:02d}:{seconds:02d}.{milliseconds:03d}" | |
def write_srt(transcript: Iterator[dict], file: TextIO): | |
""" | |
Write a transcript to a file in SRT format. | |
Example usage: | |
from pathlib import Path | |
from whisper.utils import write_srt | |
result = transcribe(model, audio_path, temperature=temperature, **args) | |
# save SRT | |
audio_basename = Path(audio_path).stem | |
with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt: | |
write_srt(result["segments"], file=srt) | |
""" | |
with open(file, "w", encoding="UTF-8") as f: | |
for segment in transcript: | |
# write srt lines | |
id = segment["id"] | |
start = format_timestamp(segment["start"], always_include_hours=True) | |
end = format_timestamp(segment["end"], always_include_hours=True) | |
text = segment["text"].strip().replace("-->", "->") | |
f.write(f"{id}\n{start} --> {end}\n{text}\n\n") | |
def create_main_tab(): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
api_text = gr.Textbox(label="OpenAI API Key") | |
file_type = gr.Radio( | |
["Video", "Audio"], | |
value="Video", | |
label="File Type", | |
interactive=True, | |
) | |
video = gr.Video() | |
audio = gr.Audio(visible=False) | |
with gr.Row(): | |
compress_btn = gr.Button("Compress") | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
compress_file = gr.File(label="Compress file", interactive=False) | |
subtitle_file = gr.File(label="Subtitle") | |
message_text = gr.Textbox(label="Info") | |
def handle_file_type_change(evt: gr.SelectData): | |
if evt.index == 0: | |
# Video | |
return [gr.update(visible=True), gr.update(visible=False)] | |
elif evt.index == 1: | |
# Audio | |
return [gr.update(visible=False), gr.update(visible=True)] | |
file_type.select( | |
handle_file_type_change, | |
None, | |
[video, audio], | |
) | |
def handle_compress_btn_submit(file_type, video, audio): | |
if file_type == "Video": | |
audio_data = audio_from_file(video) | |
elif file_type == "Audio": | |
audio_data = audio_from_file(audio) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as tmp_file: | |
audio_data.export(tmp_file.name, format="mp3", bitrate="96k") | |
return tmp_file.name | |
compress_btn.click( | |
fn=handle_compress_btn_submit, | |
inputs=[file_type, video, audio], | |
outputs=[compress_file], | |
) | |
def handle_btn_submit(compress_file, api_text): | |
def transcribe_audio(input_file, output_file): | |
with open(input_file, "rb") as f: | |
try: | |
result = openai.Audio.transcribe("whisper-1", f) | |
write_srt(result["segments"], output_file) | |
return "Success! The subtitle file will be named: {output_file}" | |
except Exception as e: | |
return f"Error. OpenAI API unavailable. Received: {e}" | |
openai.api_key = api_text | |
with tempfile.NamedTemporaryFile(suffix=".srt", delete=False) as out_file: | |
out_message = transcribe_audio(compress_file.name, out_file.name) | |
return out_file.name, out_message | |
submit_btn.click( | |
fn=handle_btn_submit, | |
inputs=[compress_file, api_text], | |
outputs=[subtitle_file, message_text], | |
) | |
return demo | |
demo = create_main_tab() | |
if __name__ == "__main__": | |
demo.launch() | |