Grey01 commited on
Commit
ff783ab
·
verified ·
1 Parent(s): a784607
Files changed (1) hide show
  1. app.py +60 -0
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ from tensorflow import keras
4
+ import keras_nlp
5
+ import PyPDF2
6
+ import docx2txt
7
+
8
+ # Load your Keras model
9
+ @st.cache_resource
10
+ def load_model_and_preprocessor():
11
+ bart_billsum = keras_nlp.models.BartSeq2SeqLM.from_preset('Grey01/bart_billsum')
12
+
13
+ # Load the default BART preprocessor (assuming you saved its configuration)
14
+ preprocessor = keras_nlp.models.BartSeq2SeqLMPreprocessor.from_preset('bart_base_en', encoder_sequence_length=512,
15
+ decoder_sequence_length=128,)
16
+
17
+ return model, preprocessor
18
+
19
+ model, preprocessor = load_model_and_preprocessor()
20
+
21
+ st.title("SummarizeIt")
22
+
23
+ # File uploader
24
+ uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt", "docx"])
25
+
26
+ # Text extraction
27
+ text = ""
28
+ if uploaded_file is not None:
29
+ if uploaded_file.type == "application/pdf":
30
+ pdf_reader = PyPDF2.PdfReader(uploaded_file)
31
+ for page in pdf_reader.pages:
32
+ text += page.extract_text()
33
+ elif uploaded_file.type == "text/plain":
34
+ text = uploaded_file.read().decode("utf-8")
35
+ elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
36
+ text = docx2txt.process(uploaded_file)
37
+ # Text input for direct text entry
38
+ user_input = st.text_area("Or paste your text here:")
39
+ text = user_input if user_input else text # Prioritize user input over file
40
+
41
+ def generate_text(model, input_texts, max_length=200, print_time_taken=False):
42
+ # Convert input_texts to a list if it's a Dataset
43
+ if isinstance(input_texts, datasets.Dataset):
44
+ input_texts = input_texts.to_list()
45
+ chunks = [input_texts[i:i+512] for i in range(0, len(input_texts), 512)]
46
+ #initialize an empty list to store summaries
47
+ summaries = []
48
+ # generate summaries for each chunk
49
+ for chunk in chunks:
50
+ # Assuming your model's generate method can handle a batch of inputs
51
+ summary = model.generate(input_texts, max_length=max_length)
52
+ summaries.append(summary)
53
+ return summary
54
+
55
+ generated_summaries = generate_text(
56
+ model,
57
+ text, # Pass the list of documents directly
58
+ )
59
+ st.subheader("Generated Summary:")
60
+ st.write(summary)