Gregniuki commited on
Commit
64a9724
1 Parent(s): 29441b6

Upload 4 files

Browse files
Files changed (4) hide show
  1. model/cfm.py +285 -0
  2. model/dataset.py +314 -0
  3. model/modules.py +658 -0
  4. model/trainer.py +353 -0
model/cfm.py ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ein notation:
3
+ b - batch
4
+ n - sequence
5
+ nt - text sequence
6
+ nw - raw wave length
7
+ d - dimension
8
+ """
9
+
10
+ from __future__ import annotations
11
+
12
+ from random import random
13
+ from typing import Callable
14
+
15
+ import torch
16
+ import torch.nn.functional as F
17
+ from torch import nn
18
+ from torch.nn.utils.rnn import pad_sequence
19
+ from torchdiffeq import odeint
20
+
21
+ from f5_tts.model.modules import MelSpec
22
+ from f5_tts.model.utils import (
23
+ default,
24
+ exists,
25
+ lens_to_mask,
26
+ list_str_to_idx,
27
+ list_str_to_tensor,
28
+ mask_from_frac_lengths,
29
+ )
30
+
31
+
32
+ class CFM(nn.Module):
33
+ def __init__(
34
+ self,
35
+ transformer: nn.Module,
36
+ sigma=0.0,
37
+ odeint_kwargs: dict = dict(
38
+ # atol = 1e-5,
39
+ # rtol = 1e-5,
40
+ method="euler" # 'midpoint'
41
+ ),
42
+ audio_drop_prob=0.3,
43
+ cond_drop_prob=0.2,
44
+ num_channels=None,
45
+ mel_spec_module: nn.Module | None = None,
46
+ mel_spec_kwargs: dict = dict(),
47
+ frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
48
+ vocab_char_map: dict[str:int] | None = None,
49
+ ):
50
+ super().__init__()
51
+
52
+ self.frac_lengths_mask = frac_lengths_mask
53
+
54
+ # mel spec
55
+ self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs))
56
+ num_channels = default(num_channels, self.mel_spec.n_mel_channels)
57
+ self.num_channels = num_channels
58
+
59
+ # classifier-free guidance
60
+ self.audio_drop_prob = audio_drop_prob
61
+ self.cond_drop_prob = cond_drop_prob
62
+
63
+ # transformer
64
+ self.transformer = transformer
65
+ dim = transformer.dim
66
+ self.dim = dim
67
+
68
+ # conditional flow related
69
+ self.sigma = sigma
70
+
71
+ # sampling related
72
+ self.odeint_kwargs = odeint_kwargs
73
+
74
+ # vocab map for tokenization
75
+ self.vocab_char_map = vocab_char_map
76
+
77
+ @property
78
+ def device(self):
79
+ return next(self.parameters()).device
80
+
81
+ @torch.no_grad()
82
+ def sample(
83
+ self,
84
+ cond: float["b n d"] | float["b nw"], # noqa: F722
85
+ text: int["b nt"] | list[str], # noqa: F722
86
+ duration: int | int["b"], # noqa: F821
87
+ *,
88
+ lens: int["b"] | None = None, # noqa: F821
89
+ steps=32,
90
+ cfg_strength=1.0,
91
+ sway_sampling_coef=None,
92
+ seed: int | None = None,
93
+ max_duration=4096,
94
+ vocoder: Callable[[float["b d n"]], float["b nw"]] | None = None, # noqa: F722
95
+ no_ref_audio=False,
96
+ duplicate_test=False,
97
+ t_inter=0.1,
98
+ edit_mask=None,
99
+ ):
100
+ self.eval()
101
+ # raw wave
102
+
103
+ if cond.ndim == 2:
104
+ cond = self.mel_spec(cond)
105
+ cond = cond.permute(0, 2, 1)
106
+ assert cond.shape[-1] == self.num_channels
107
+
108
+ cond = cond.to(next(self.parameters()).dtype)
109
+
110
+ batch, cond_seq_len, device = *cond.shape[:2], cond.device
111
+ if not exists(lens):
112
+ lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
113
+
114
+ # text
115
+
116
+ if isinstance(text, list):
117
+ if exists(self.vocab_char_map):
118
+ text = list_str_to_idx(text, self.vocab_char_map).to(device)
119
+ else:
120
+ text = list_str_to_tensor(text).to(device)
121
+ assert text.shape[0] == batch
122
+
123
+ if exists(text):
124
+ text_lens = (text != -1).sum(dim=-1)
125
+ lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters
126
+
127
+ # duration
128
+
129
+ cond_mask = lens_to_mask(lens)
130
+ if edit_mask is not None:
131
+ cond_mask = cond_mask & edit_mask
132
+
133
+ if isinstance(duration, int):
134
+ duration = torch.full((batch,), duration, device=device, dtype=torch.long)
135
+
136
+ duration = torch.maximum(lens + 1, duration) # just add one token so something is generated
137
+ duration = duration.clamp(max=max_duration)
138
+ max_duration = duration.amax()
139
+
140
+ # duplicate test corner for inner time step oberservation
141
+ if duplicate_test:
142
+ test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2 * cond_seq_len), value=0.0)
143
+
144
+ cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value=0.0)
145
+ cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value=False)
146
+ cond_mask = cond_mask.unsqueeze(-1)
147
+ step_cond = torch.where(
148
+ cond_mask, cond, torch.zeros_like(cond)
149
+ ) # allow direct control (cut cond audio) with lens passed in
150
+
151
+ if batch > 1:
152
+ mask = lens_to_mask(duration)
153
+ else: # save memory and speed up, as single inference need no mask currently
154
+ mask = None
155
+
156
+ # test for no ref audio
157
+ if no_ref_audio:
158
+ cond = torch.zeros_like(cond)
159
+
160
+ # neural ode
161
+
162
+ def fn(t, x):
163
+ # at each step, conditioning is fixed
164
+ # step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
165
+
166
+ # predict flow
167
+ pred = self.transformer(
168
+ x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False
169
+ )
170
+ if cfg_strength < 1e-5:
171
+ return pred
172
+
173
+ null_pred = self.transformer(
174
+ x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True
175
+ )
176
+ return pred + (pred - null_pred) * cfg_strength
177
+
178
+ # noise input
179
+ # to make sure batch inference result is same with different batch size, and for sure single inference
180
+ # still some difference maybe due to convolutional layers
181
+ y0 = []
182
+ for dur in duration:
183
+ if exists(seed):
184
+ torch.manual_seed(seed)
185
+ y0.append(torch.randn(dur, self.num_channels, device=self.device, dtype=step_cond.dtype))
186
+ y0 = pad_sequence(y0, padding_value=0, batch_first=True)
187
+
188
+ t_start = 0
189
+
190
+ # duplicate test corner for inner time step oberservation
191
+ if duplicate_test:
192
+ t_start = t_inter
193
+ y0 = (1 - t_start) * y0 + t_start * test_cond
194
+ steps = int(steps * (1 - t_start))
195
+
196
+ t = torch.linspace(t_start, 1, steps, device=self.device, dtype=step_cond.dtype)
197
+ if sway_sampling_coef is not None:
198
+ t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
199
+
200
+ trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
201
+
202
+ sampled = trajectory[-1]
203
+ out = sampled
204
+ out = torch.where(cond_mask, cond, out)
205
+
206
+ if exists(vocoder):
207
+ out = out.permute(0, 2, 1)
208
+ out = vocoder(out)
209
+
210
+ return out, trajectory
211
+
212
+ def forward(
213
+ self,
214
+ inp: float["b n d"] | float["b nw"], # mel or raw wave # noqa: F722
215
+ text: int["b nt"] | list[str], # noqa: F722
216
+ *,
217
+ lens: int["b"] | None = None, # noqa: F821
218
+ noise_scheduler: str | None = None,
219
+ ):
220
+ # handle raw wave
221
+ if inp.ndim == 2:
222
+ inp = self.mel_spec(inp)
223
+ inp = inp.permute(0, 2, 1)
224
+ assert inp.shape[-1] == self.num_channels
225
+
226
+ batch, seq_len, dtype, device, _σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
227
+
228
+ # handle text as string
229
+ if isinstance(text, list):
230
+ if exists(self.vocab_char_map):
231
+ text = list_str_to_idx(text, self.vocab_char_map).to(device)
232
+ else:
233
+ text = list_str_to_tensor(text).to(device)
234
+ assert text.shape[0] == batch
235
+
236
+ # lens and mask
237
+ if not exists(lens):
238
+ lens = torch.full((batch,), seq_len, device=device)
239
+
240
+ mask = lens_to_mask(lens, length=seq_len) # useless here, as collate_fn will pad to max length in batch
241
+
242
+ # get a random span to mask out for training conditionally
243
+ frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
244
+ rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
245
+
246
+ if exists(mask):
247
+ rand_span_mask &= mask
248
+
249
+ # mel is x1
250
+ x1 = inp
251
+
252
+ # x0 is gaussian noise
253
+ x0 = torch.randn_like(x1)
254
+
255
+ # time step
256
+ time = torch.rand((batch,), dtype=dtype, device=self.device)
257
+ # TODO. noise_scheduler
258
+
259
+ # sample xt (φ_t(x) in the paper)
260
+ t = time.unsqueeze(-1).unsqueeze(-1)
261
+ φ = (1 - t) * x0 + t * x1
262
+ flow = x1 - x0
263
+
264
+ # only predict what is within the random mask span for infilling
265
+ cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)
266
+
267
+ # transformer and cfg training with a drop rate
268
+ drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper
269
+ if random() < self.cond_drop_prob: # p_uncond in voicebox paper
270
+ drop_audio_cond = True
271
+ drop_text = True
272
+ else:
273
+ drop_text = False
274
+
275
+ # if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
276
+ # adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
277
+ pred = self.transformer(
278
+ x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text
279
+ )
280
+
281
+ # flow matching loss
282
+ loss = F.mse_loss(pred, flow, reduction="none")
283
+ loss = loss[rand_span_mask]
284
+
285
+ return loss.mean(), cond, pred
model/dataset.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ from importlib.resources import files
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import torchaudio
8
+ from datasets import Dataset as Dataset_
9
+ from datasets import load_from_disk
10
+ from torch import nn
11
+ from torch.utils.data import Dataset, Sampler
12
+ from tqdm import tqdm
13
+
14
+ from f5_tts.model.modules import MelSpec
15
+ from f5_tts.model.utils import default
16
+
17
+
18
+ class HFDataset(Dataset):
19
+ def __init__(
20
+ self,
21
+ hf_dataset: Dataset,
22
+ target_sample_rate=24_000,
23
+ n_mel_channels=100,
24
+ hop_length=256,
25
+ n_fft=1024,
26
+ win_length=1024,
27
+ mel_spec_type="vocos",
28
+ ):
29
+ self.data = hf_dataset
30
+ self.target_sample_rate = target_sample_rate
31
+ self.hop_length = hop_length
32
+
33
+ self.mel_spectrogram = MelSpec(
34
+ n_fft=n_fft,
35
+ hop_length=hop_length,
36
+ win_length=win_length,
37
+ n_mel_channels=n_mel_channels,
38
+ target_sample_rate=target_sample_rate,
39
+ mel_spec_type=mel_spec_type,
40
+ )
41
+
42
+ def get_frame_len(self, index):
43
+ row = self.data[index]
44
+ audio = row["audio"]["array"]
45
+ sample_rate = row["audio"]["sampling_rate"]
46
+ return audio.shape[-1] / sample_rate * self.target_sample_rate / self.hop_length
47
+
48
+ def __len__(self):
49
+ return len(self.data)
50
+
51
+ def __getitem__(self, index):
52
+ row = self.data[index]
53
+ audio = row["audio"]["array"]
54
+
55
+ # logger.info(f"Audio shape: {audio.shape}")
56
+
57
+ sample_rate = row["audio"]["sampling_rate"]
58
+ duration = audio.shape[-1] / sample_rate
59
+
60
+ if duration > 30 or duration < 0.3:
61
+ return self.__getitem__((index + 1) % len(self.data))
62
+
63
+ audio_tensor = torch.from_numpy(audio).float()
64
+
65
+ if sample_rate != self.target_sample_rate:
66
+ resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate)
67
+ audio_tensor = resampler(audio_tensor)
68
+
69
+ audio_tensor = audio_tensor.unsqueeze(0) # 't -> 1 t')
70
+
71
+ mel_spec = self.mel_spectrogram(audio_tensor)
72
+
73
+ mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
74
+
75
+ text = row["text"]
76
+
77
+ return dict(
78
+ mel_spec=mel_spec,
79
+ text=text,
80
+ )
81
+
82
+
83
+ class CustomDataset(Dataset):
84
+ def __init__(
85
+ self,
86
+ custom_dataset: Dataset,
87
+ durations=None,
88
+ target_sample_rate=24_000,
89
+ hop_length=256,
90
+ n_mel_channels=100,
91
+ n_fft=1024,
92
+ win_length=1024,
93
+ mel_spec_type="vocos",
94
+ preprocessed_mel=False,
95
+ mel_spec_module: nn.Module | None = None,
96
+ ):
97
+ self.data = custom_dataset
98
+ self.durations = durations
99
+ self.target_sample_rate = target_sample_rate
100
+ self.hop_length = hop_length
101
+ self.n_fft = n_fft
102
+ self.win_length = win_length
103
+ self.mel_spec_type = mel_spec_type
104
+ self.preprocessed_mel = preprocessed_mel
105
+
106
+ if not preprocessed_mel:
107
+ self.mel_spectrogram = default(
108
+ mel_spec_module,
109
+ MelSpec(
110
+ n_fft=n_fft,
111
+ hop_length=hop_length,
112
+ win_length=win_length,
113
+ n_mel_channels=n_mel_channels,
114
+ target_sample_rate=target_sample_rate,
115
+ mel_spec_type=mel_spec_type,
116
+ ),
117
+ )
118
+
119
+ def get_frame_len(self, index):
120
+ if (
121
+ self.durations is not None
122
+ ): # Please make sure the separately provided durations are correct, otherwise 99.99% OOM
123
+ return self.durations[index] * self.target_sample_rate / self.hop_length
124
+ return self.data[index]["duration"] * self.target_sample_rate / self.hop_length
125
+
126
+ def __len__(self):
127
+ return len(self.data)
128
+
129
+ def __getitem__(self, index):
130
+ row = self.data[index]
131
+ audio_path = row["audio_path"]
132
+ text = row["text"]
133
+ duration = row["duration"]
134
+
135
+ if self.preprocessed_mel:
136
+ mel_spec = torch.tensor(row["mel_spec"])
137
+
138
+ else:
139
+ audio, source_sample_rate = torchaudio.load(audio_path)
140
+ if audio.shape[0] > 1:
141
+ audio = torch.mean(audio, dim=0, keepdim=True)
142
+
143
+ if duration > 30 or duration < 0.3:
144
+ return self.__getitem__((index + 1) % len(self.data))
145
+
146
+ if source_sample_rate != self.target_sample_rate:
147
+ resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate)
148
+ audio = resampler(audio)
149
+
150
+ mel_spec = self.mel_spectrogram(audio)
151
+ mel_spec = mel_spec.squeeze(0) # '1 d t -> d t')
152
+
153
+ return dict(
154
+ mel_spec=mel_spec,
155
+ text=text,
156
+ )
157
+
158
+
159
+ # Dynamic Batch Sampler
160
+
161
+
162
+ class DynamicBatchSampler(Sampler[list[int]]):
163
+ """Extension of Sampler that will do the following:
164
+ 1. Change the batch size (essentially number of sequences)
165
+ in a batch to ensure that the total number of frames are less
166
+ than a certain threshold.
167
+ 2. Make sure the padding efficiency in the batch is high.
168
+ """
169
+
170
+ def __init__(
171
+ self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_last: bool = False
172
+ ):
173
+ self.sampler = sampler
174
+ self.frames_threshold = frames_threshold
175
+ self.max_samples = max_samples
176
+
177
+ indices, batches = [], []
178
+ data_source = self.sampler.data_source
179
+
180
+ for idx in tqdm(
181
+ self.sampler, desc="Sorting with sampler... if slow, check whether dataset is provided with duration"
182
+ ):
183
+ indices.append((idx, data_source.get_frame_len(idx)))
184
+ indices.sort(key=lambda elem: elem[1])
185
+
186
+ batch = []
187
+ batch_frames = 0
188
+ for idx, frame_len in tqdm(
189
+ indices, desc=f"Creating dynamic batches with {frames_threshold} audio frames per gpu"
190
+ ):
191
+ if batch_frames + frame_len <= self.frames_threshold and (max_samples == 0 or len(batch) < max_samples):
192
+ batch.append(idx)
193
+ batch_frames += frame_len
194
+ else:
195
+ if len(batch) > 0:
196
+ batches.append(batch)
197
+ if frame_len <= self.frames_threshold:
198
+ batch = [idx]
199
+ batch_frames = frame_len
200
+ else:
201
+ batch = []
202
+ batch_frames = 0
203
+
204
+ if not drop_last and len(batch) > 0:
205
+ batches.append(batch)
206
+
207
+ del indices
208
+
209
+ # if want to have different batches between epochs, may just set a seed and log it in ckpt
210
+ # cuz during multi-gpu training, although the batch on per gpu not change between epochs, the formed general minibatch is different
211
+ # e.g. for epoch n, use (random_seed + n)
212
+ random.seed(random_seed)
213
+ random.shuffle(batches)
214
+
215
+ self.batches = batches
216
+
217
+ def __iter__(self):
218
+ return iter(self.batches)
219
+
220
+ def __len__(self):
221
+ return len(self.batches)
222
+
223
+
224
+ # Load dataset
225
+
226
+
227
+ def load_dataset(
228
+ dataset_name: str,
229
+ tokenizer: str = "pinyin",
230
+ dataset_type: str = "CustomDataset",
231
+ audio_type: str = "raw",
232
+ mel_spec_module: nn.Module | None = None,
233
+ mel_spec_kwargs: dict = dict(),
234
+ ) -> CustomDataset | HFDataset:
235
+ """
236
+ dataset_type - "CustomDataset" if you want to use tokenizer name and default data path to load for train_dataset
237
+ - "CustomDatasetPath" if you just want to pass the full path to a preprocessed dataset without relying on tokenizer
238
+ """
239
+
240
+ print("Loading dataset ...")
241
+
242
+ if dataset_type == "CustomDataset":
243
+ rel_data_path = str(files("f5_tts").joinpath(f"../../data/{dataset_name}_{tokenizer}"))
244
+ if audio_type == "raw":
245
+ try:
246
+ train_dataset = load_from_disk(f"{rel_data_path}/raw")
247
+ except: # noqa: E722
248
+ train_dataset = Dataset_.from_file(f"{rel_data_path}/raw.arrow")
249
+ preprocessed_mel = False
250
+ elif audio_type == "mel":
251
+ train_dataset = Dataset_.from_file(f"{rel_data_path}/mel.arrow")
252
+ preprocessed_mel = True
253
+ with open(f"{rel_data_path}/duration.json", "r", encoding="utf-8") as f:
254
+ data_dict = json.load(f)
255
+ durations = data_dict["duration"]
256
+ train_dataset = CustomDataset(
257
+ train_dataset,
258
+ durations=durations,
259
+ preprocessed_mel=preprocessed_mel,
260
+ mel_spec_module=mel_spec_module,
261
+ **mel_spec_kwargs,
262
+ )
263
+
264
+ elif dataset_type == "CustomDatasetPath":
265
+ try:
266
+ train_dataset = load_from_disk(f"{dataset_name}/raw")
267
+ except: # noqa: E722
268
+ train_dataset = Dataset_.from_file(f"{dataset_name}/raw.arrow")
269
+
270
+ with open(f"{dataset_name}/duration.json", "r", encoding="utf-8") as f:
271
+ data_dict = json.load(f)
272
+ durations = data_dict["duration"]
273
+ train_dataset = CustomDataset(
274
+ train_dataset, durations=durations, preprocessed_mel=preprocessed_mel, **mel_spec_kwargs
275
+ )
276
+
277
+ elif dataset_type == "HFDataset":
278
+ print(
279
+ "Should manually modify the path of huggingface dataset to your need.\n"
280
+ + "May also the corresponding script cuz different dataset may have different format."
281
+ )
282
+ pre, post = dataset_name.split("_")
283
+ train_dataset = HFDataset(
284
+ load_dataset(f"{pre}/{pre}", split=f"train.{post}", cache_dir=str(files("f5_tts").joinpath("../../data"))),
285
+ )
286
+
287
+ return train_dataset
288
+
289
+
290
+ # collation
291
+
292
+
293
+ def collate_fn(batch):
294
+ mel_specs = [item["mel_spec"].squeeze(0) for item in batch]
295
+ mel_lengths = torch.LongTensor([spec.shape[-1] for spec in mel_specs])
296
+ max_mel_length = mel_lengths.amax()
297
+
298
+ padded_mel_specs = []
299
+ for spec in mel_specs: # TODO. maybe records mask for attention here
300
+ padding = (0, max_mel_length - spec.size(-1))
301
+ padded_spec = F.pad(spec, padding, value=0)
302
+ padded_mel_specs.append(padded_spec)
303
+
304
+ mel_specs = torch.stack(padded_mel_specs)
305
+
306
+ text = [item["text"] for item in batch]
307
+ text_lengths = torch.LongTensor([len(item) for item in text])
308
+
309
+ return dict(
310
+ mel=mel_specs,
311
+ mel_lengths=mel_lengths,
312
+ text=text,
313
+ text_lengths=text_lengths,
314
+ )
model/modules.py ADDED
@@ -0,0 +1,658 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ein notation:
3
+ b - batch
4
+ n - sequence
5
+ nt - text sequence
6
+ nw - raw wave length
7
+ d - dimension
8
+ """
9
+
10
+ from __future__ import annotations
11
+
12
+ import math
13
+ from typing import Optional
14
+
15
+ import torch
16
+ import torch.nn.functional as F
17
+ import torchaudio
18
+ from librosa.filters import mel as librosa_mel_fn
19
+ from torch import nn
20
+ from x_transformers.x_transformers import apply_rotary_pos_emb
21
+
22
+
23
+ # raw wav to mel spec
24
+
25
+
26
+ mel_basis_cache = {}
27
+ hann_window_cache = {}
28
+
29
+
30
+ def get_bigvgan_mel_spectrogram(
31
+ waveform,
32
+ n_fft=1024,
33
+ n_mel_channels=100,
34
+ target_sample_rate=24000,
35
+ hop_length=256,
36
+ win_length=1024,
37
+ fmin=0,
38
+ fmax=None,
39
+ center=False,
40
+ ): # Copy from https://github.com/NVIDIA/BigVGAN/tree/main
41
+ device = waveform.device
42
+ key = f"{n_fft}_{n_mel_channels}_{target_sample_rate}_{hop_length}_{win_length}_{fmin}_{fmax}_{device}"
43
+
44
+ if key not in mel_basis_cache:
45
+ mel = librosa_mel_fn(sr=target_sample_rate, n_fft=n_fft, n_mels=n_mel_channels, fmin=fmin, fmax=fmax)
46
+ mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) # TODO: why they need .float()?
47
+ hann_window_cache[key] = torch.hann_window(win_length).to(device)
48
+
49
+ mel_basis = mel_basis_cache[key]
50
+ hann_window = hann_window_cache[key]
51
+
52
+ padding = (n_fft - hop_length) // 2
53
+ waveform = torch.nn.functional.pad(waveform.unsqueeze(1), (padding, padding), mode="reflect").squeeze(1)
54
+
55
+ spec = torch.stft(
56
+ waveform,
57
+ n_fft,
58
+ hop_length=hop_length,
59
+ win_length=win_length,
60
+ window=hann_window,
61
+ center=center,
62
+ pad_mode="reflect",
63
+ normalized=False,
64
+ onesided=True,
65
+ return_complex=True,
66
+ )
67
+ spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
68
+
69
+ mel_spec = torch.matmul(mel_basis, spec)
70
+ mel_spec = torch.log(torch.clamp(mel_spec, min=1e-5))
71
+
72
+ return mel_spec
73
+
74
+
75
+ def get_vocos_mel_spectrogram(
76
+ waveform,
77
+ n_fft=1024,
78
+ n_mel_channels=100,
79
+ target_sample_rate=24000,
80
+ hop_length=256,
81
+ win_length=1024,
82
+ ):
83
+ mel_stft = torchaudio.transforms.MelSpectrogram(
84
+ sample_rate=target_sample_rate,
85
+ n_fft=n_fft,
86
+ win_length=win_length,
87
+ hop_length=hop_length,
88
+ n_mels=n_mel_channels,
89
+ power=1,
90
+ center=True,
91
+ normalized=False,
92
+ norm=None,
93
+ ).to(waveform.device)
94
+ if len(waveform.shape) == 3:
95
+ waveform = waveform.squeeze(1) # 'b 1 nw -> b nw'
96
+
97
+ assert len(waveform.shape) == 2
98
+
99
+ mel = mel_stft(waveform)
100
+ mel = mel.clamp(min=1e-5).log()
101
+ return mel
102
+
103
+
104
+ class MelSpec(nn.Module):
105
+ def __init__(
106
+ self,
107
+ n_fft=1024,
108
+ hop_length=256,
109
+ win_length=1024,
110
+ n_mel_channels=100,
111
+ target_sample_rate=24_000,
112
+ mel_spec_type="vocos",
113
+ ):
114
+ super().__init__()
115
+ assert mel_spec_type in ["vocos", "bigvgan"], print("We only support two extract mel backend: vocos or bigvgan")
116
+
117
+ self.n_fft = n_fft
118
+ self.hop_length = hop_length
119
+ self.win_length = win_length
120
+ self.n_mel_channels = n_mel_channels
121
+ self.target_sample_rate = target_sample_rate
122
+
123
+ if mel_spec_type == "vocos":
124
+ self.extractor = get_vocos_mel_spectrogram
125
+ elif mel_spec_type == "bigvgan":
126
+ self.extractor = get_bigvgan_mel_spectrogram
127
+
128
+ self.register_buffer("dummy", torch.tensor(0), persistent=False)
129
+
130
+ def forward(self, wav):
131
+ if self.dummy.device != wav.device:
132
+ self.to(wav.device)
133
+
134
+ mel = self.extractor(
135
+ waveform=wav,
136
+ n_fft=self.n_fft,
137
+ n_mel_channels=self.n_mel_channels,
138
+ target_sample_rate=self.target_sample_rate,
139
+ hop_length=self.hop_length,
140
+ win_length=self.win_length,
141
+ )
142
+
143
+ return mel
144
+
145
+
146
+ # sinusoidal position embedding
147
+
148
+
149
+ class SinusPositionEmbedding(nn.Module):
150
+ def __init__(self, dim):
151
+ super().__init__()
152
+ self.dim = dim
153
+
154
+ def forward(self, x, scale=1000):
155
+ device = x.device
156
+ half_dim = self.dim // 2
157
+ emb = math.log(10000) / (half_dim - 1)
158
+ emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
159
+ emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
160
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
161
+ return emb
162
+
163
+
164
+ # convolutional position embedding
165
+
166
+
167
+ class ConvPositionEmbedding(nn.Module):
168
+ def __init__(self, dim, kernel_size=31, groups=16):
169
+ super().__init__()
170
+ assert kernel_size % 2 != 0
171
+ self.conv1d = nn.Sequential(
172
+ nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
173
+ nn.Mish(),
174
+ nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
175
+ nn.Mish(),
176
+ )
177
+
178
+ def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
179
+ if mask is not None:
180
+ mask = mask[..., None]
181
+ x = x.masked_fill(~mask, 0.0)
182
+
183
+ x = x.permute(0, 2, 1)
184
+ x = self.conv1d(x)
185
+ out = x.permute(0, 2, 1)
186
+
187
+ if mask is not None:
188
+ out = out.masked_fill(~mask, 0.0)
189
+
190
+ return out
191
+
192
+
193
+ # rotary positional embedding related
194
+
195
+
196
+ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
197
+ # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
198
+ # has some connection to NTK literature
199
+ # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
200
+ # https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
201
+ theta *= theta_rescale_factor ** (dim / (dim - 2))
202
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
203
+ t = torch.arange(end, device=freqs.device) # type: ignore
204
+ freqs = torch.outer(t, freqs).float() # type: ignore
205
+ freqs_cos = torch.cos(freqs) # real part
206
+ freqs_sin = torch.sin(freqs) # imaginary part
207
+ return torch.cat([freqs_cos, freqs_sin], dim=-1)
208
+
209
+
210
+ def get_pos_embed_indices(start, length, max_pos, scale=1.0):
211
+ # length = length if isinstance(length, int) else length.max()
212
+ scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
213
+ pos = (
214
+ start.unsqueeze(1)
215
+ + (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
216
+ )
217
+ # avoid extra long error.
218
+ pos = torch.where(pos < max_pos, pos, max_pos - 1)
219
+ return pos
220
+
221
+
222
+ # Global Response Normalization layer (Instance Normalization ?)
223
+
224
+
225
+ class GRN(nn.Module):
226
+ def __init__(self, dim):
227
+ super().__init__()
228
+ self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
229
+ self.beta = nn.Parameter(torch.zeros(1, 1, dim))
230
+
231
+ def forward(self, x):
232
+ Gx = torch.norm(x, p=2, dim=1, keepdim=True)
233
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
234
+ return self.gamma * (x * Nx) + self.beta + x
235
+
236
+
237
+ # ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
238
+ # ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
239
+
240
+
241
+ class ConvNeXtV2Block(nn.Module):
242
+ def __init__(
243
+ self,
244
+ dim: int,
245
+ intermediate_dim: int,
246
+ dilation: int = 1,
247
+ ):
248
+ super().__init__()
249
+ padding = (dilation * (7 - 1)) // 2
250
+ self.dwconv = nn.Conv1d(
251
+ dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
252
+ ) # depthwise conv
253
+ self.norm = nn.LayerNorm(dim, eps=1e-6)
254
+ self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
255
+ self.act = nn.GELU()
256
+ self.grn = GRN(intermediate_dim)
257
+ self.pwconv2 = nn.Linear(intermediate_dim, dim)
258
+
259
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
260
+ residual = x
261
+ x = x.transpose(1, 2) # b n d -> b d n
262
+ x = self.dwconv(x)
263
+ x = x.transpose(1, 2) # b d n -> b n d
264
+ x = self.norm(x)
265
+ x = self.pwconv1(x)
266
+ x = self.act(x)
267
+ x = self.grn(x)
268
+ x = self.pwconv2(x)
269
+ return residual + x
270
+
271
+
272
+ # AdaLayerNormZero
273
+ # return with modulated x for attn input, and params for later mlp modulation
274
+
275
+
276
+ class AdaLayerNormZero(nn.Module):
277
+ def __init__(self, dim):
278
+ super().__init__()
279
+
280
+ self.silu = nn.SiLU()
281
+ self.linear = nn.Linear(dim, dim * 6)
282
+
283
+ self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
284
+
285
+ def forward(self, x, emb=None):
286
+ emb = self.linear(self.silu(emb))
287
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
288
+
289
+ x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
290
+ return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
291
+
292
+
293
+ # AdaLayerNormZero for final layer
294
+ # return only with modulated x for attn input, cuz no more mlp modulation
295
+
296
+
297
+ class AdaLayerNormZero_Final(nn.Module):
298
+ def __init__(self, dim):
299
+ super().__init__()
300
+
301
+ self.silu = nn.SiLU()
302
+ self.linear = nn.Linear(dim, dim * 2)
303
+
304
+ self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
305
+
306
+ def forward(self, x, emb):
307
+ emb = self.linear(self.silu(emb))
308
+ scale, shift = torch.chunk(emb, 2, dim=1)
309
+
310
+ x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
311
+ return x
312
+
313
+
314
+ # FeedForward
315
+
316
+
317
+ class FeedForward(nn.Module):
318
+ def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
319
+ super().__init__()
320
+ inner_dim = int(dim * mult)
321
+ dim_out = dim_out if dim_out is not None else dim
322
+
323
+ activation = nn.GELU(approximate=approximate)
324
+ project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
325
+ self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
326
+
327
+ def forward(self, x):
328
+ return self.ff(x)
329
+
330
+
331
+ # Attention with possible joint part
332
+ # modified from diffusers/src/diffusers/models/attention_processor.py
333
+
334
+
335
+ class Attention(nn.Module):
336
+ def __init__(
337
+ self,
338
+ processor: JointAttnProcessor | AttnProcessor,
339
+ dim: int,
340
+ heads: int = 8,
341
+ dim_head: int = 64,
342
+ dropout: float = 0.0,
343
+ context_dim: Optional[int] = None, # if not None -> joint attention
344
+ context_pre_only=None,
345
+ ):
346
+ super().__init__()
347
+
348
+ if not hasattr(F, "scaled_dot_product_attention"):
349
+ raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
350
+
351
+ self.processor = processor
352
+
353
+ self.dim = dim
354
+ self.heads = heads
355
+ self.inner_dim = dim_head * heads
356
+ self.dropout = dropout
357
+
358
+ self.context_dim = context_dim
359
+ self.context_pre_only = context_pre_only
360
+
361
+ self.to_q = nn.Linear(dim, self.inner_dim)
362
+ self.to_k = nn.Linear(dim, self.inner_dim)
363
+ self.to_v = nn.Linear(dim, self.inner_dim)
364
+
365
+ if self.context_dim is not None:
366
+ self.to_k_c = nn.Linear(context_dim, self.inner_dim)
367
+ self.to_v_c = nn.Linear(context_dim, self.inner_dim)
368
+ if self.context_pre_only is not None:
369
+ self.to_q_c = nn.Linear(context_dim, self.inner_dim)
370
+
371
+ self.to_out = nn.ModuleList([])
372
+ self.to_out.append(nn.Linear(self.inner_dim, dim))
373
+ self.to_out.append(nn.Dropout(dropout))
374
+
375
+ if self.context_pre_only is not None and not self.context_pre_only:
376
+ self.to_out_c = nn.Linear(self.inner_dim, dim)
377
+
378
+ def forward(
379
+ self,
380
+ x: float["b n d"], # noised input x # noqa: F722
381
+ c: float["b n d"] = None, # context c # noqa: F722
382
+ mask: bool["b n"] | None = None, # noqa: F722
383
+ rope=None, # rotary position embedding for x
384
+ c_rope=None, # rotary position embedding for c
385
+ ) -> torch.Tensor:
386
+ if c is not None:
387
+ return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
388
+ else:
389
+ return self.processor(self, x, mask=mask, rope=rope)
390
+
391
+
392
+ # Attention processor
393
+
394
+
395
+ class AttnProcessor:
396
+ def __init__(self):
397
+ pass
398
+
399
+ def __call__(
400
+ self,
401
+ attn: Attention,
402
+ x: float["b n d"], # noised input x # noqa: F722
403
+ mask: bool["b n"] | None = None, # noqa: F722
404
+ rope=None, # rotary position embedding
405
+ ) -> torch.FloatTensor:
406
+ batch_size = x.shape[0]
407
+
408
+ # `sample` projections.
409
+ query = attn.to_q(x)
410
+ key = attn.to_k(x)
411
+ value = attn.to_v(x)
412
+
413
+ # apply rotary position embedding
414
+ if rope is not None:
415
+ freqs, xpos_scale = rope
416
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
417
+
418
+ query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
419
+ key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
420
+
421
+ # attention
422
+ inner_dim = key.shape[-1]
423
+ head_dim = inner_dim // attn.heads
424
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
425
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
426
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
427
+
428
+ # mask. e.g. inference got a batch with different target durations, mask out the padding
429
+ if mask is not None:
430
+ attn_mask = mask
431
+ attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
432
+ attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
433
+ else:
434
+ attn_mask = None
435
+
436
+ x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
437
+ x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
438
+ x = x.to(query.dtype)
439
+
440
+ # linear proj
441
+ x = attn.to_out[0](x)
442
+ # dropout
443
+ x = attn.to_out[1](x)
444
+
445
+ if mask is not None:
446
+ mask = mask.unsqueeze(-1)
447
+ x = x.masked_fill(~mask, 0.0)
448
+
449
+ return x
450
+
451
+
452
+ # Joint Attention processor for MM-DiT
453
+ # modified from diffusers/src/diffusers/models/attention_processor.py
454
+
455
+
456
+ class JointAttnProcessor:
457
+ def __init__(self):
458
+ pass
459
+
460
+ def __call__(
461
+ self,
462
+ attn: Attention,
463
+ x: float["b n d"], # noised input x # noqa: F722
464
+ c: float["b nt d"] = None, # context c, here text # noqa: F722
465
+ mask: bool["b n"] | None = None, # noqa: F722
466
+ rope=None, # rotary position embedding for x
467
+ c_rope=None, # rotary position embedding for c
468
+ ) -> torch.FloatTensor:
469
+ residual = x
470
+
471
+ batch_size = c.shape[0]
472
+
473
+ # `sample` projections.
474
+ query = attn.to_q(x)
475
+ key = attn.to_k(x)
476
+ value = attn.to_v(x)
477
+
478
+ # `context` projections.
479
+ c_query = attn.to_q_c(c)
480
+ c_key = attn.to_k_c(c)
481
+ c_value = attn.to_v_c(c)
482
+
483
+ # apply rope for context and noised input independently
484
+ if rope is not None:
485
+ freqs, xpos_scale = rope
486
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
487
+ query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
488
+ key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
489
+ if c_rope is not None:
490
+ freqs, xpos_scale = c_rope
491
+ q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
492
+ c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
493
+ c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
494
+
495
+ # attention
496
+ query = torch.cat([query, c_query], dim=1)
497
+ key = torch.cat([key, c_key], dim=1)
498
+ value = torch.cat([value, c_value], dim=1)
499
+
500
+ inner_dim = key.shape[-1]
501
+ head_dim = inner_dim // attn.heads
502
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
503
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
504
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
505
+
506
+ # mask. e.g. inference got a batch with different target durations, mask out the padding
507
+ if mask is not None:
508
+ attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
509
+ attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
510
+ attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
511
+ else:
512
+ attn_mask = None
513
+
514
+ x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
515
+ x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
516
+ x = x.to(query.dtype)
517
+
518
+ # Split the attention outputs.
519
+ x, c = (
520
+ x[:, : residual.shape[1]],
521
+ x[:, residual.shape[1] :],
522
+ )
523
+
524
+ # linear proj
525
+ x = attn.to_out[0](x)
526
+ # dropout
527
+ x = attn.to_out[1](x)
528
+ if not attn.context_pre_only:
529
+ c = attn.to_out_c(c)
530
+
531
+ if mask is not None:
532
+ mask = mask.unsqueeze(-1)
533
+ x = x.masked_fill(~mask, 0.0)
534
+ # c = c.masked_fill(~mask, 0.) # no mask for c (text)
535
+
536
+ return x, c
537
+
538
+
539
+ # DiT Block
540
+
541
+
542
+ class DiTBlock(nn.Module):
543
+ def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
544
+ super().__init__()
545
+
546
+ self.attn_norm = AdaLayerNormZero(dim)
547
+ self.attn = Attention(
548
+ processor=AttnProcessor(),
549
+ dim=dim,
550
+ heads=heads,
551
+ dim_head=dim_head,
552
+ dropout=dropout,
553
+ )
554
+
555
+ self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
556
+ self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
557
+
558
+ def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
559
+ # pre-norm & modulation for attention input
560
+ norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
561
+
562
+ # attention
563
+ attn_output = self.attn(x=norm, mask=mask, rope=rope)
564
+
565
+ # process attention output for input x
566
+ x = x + gate_msa.unsqueeze(1) * attn_output
567
+
568
+ norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
569
+ ff_output = self.ff(norm)
570
+ x = x + gate_mlp.unsqueeze(1) * ff_output
571
+
572
+ return x
573
+
574
+
575
+ # MMDiT Block https://arxiv.org/abs/2403.03206
576
+
577
+
578
+ class MMDiTBlock(nn.Module):
579
+ r"""
580
+ modified from diffusers/src/diffusers/models/attention.py
581
+
582
+ notes.
583
+ _c: context related. text, cond, etc. (left part in sd3 fig2.b)
584
+ _x: noised input related. (right part)
585
+ context_pre_only: last layer only do prenorm + modulation cuz no more ffn
586
+ """
587
+
588
+ def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
589
+ super().__init__()
590
+
591
+ self.context_pre_only = context_pre_only
592
+
593
+ self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
594
+ self.attn_norm_x = AdaLayerNormZero(dim)
595
+ self.attn = Attention(
596
+ processor=JointAttnProcessor(),
597
+ dim=dim,
598
+ heads=heads,
599
+ dim_head=dim_head,
600
+ dropout=dropout,
601
+ context_dim=dim,
602
+ context_pre_only=context_pre_only,
603
+ )
604
+
605
+ if not context_pre_only:
606
+ self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
607
+ self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
608
+ else:
609
+ self.ff_norm_c = None
610
+ self.ff_c = None
611
+ self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
612
+ self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
613
+
614
+ def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
615
+ # pre-norm & modulation for attention input
616
+ if self.context_pre_only:
617
+ norm_c = self.attn_norm_c(c, t)
618
+ else:
619
+ norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
620
+ norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
621
+
622
+ # attention
623
+ x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
624
+
625
+ # process attention output for context c
626
+ if self.context_pre_only:
627
+ c = None
628
+ else: # if not last layer
629
+ c = c + c_gate_msa.unsqueeze(1) * c_attn_output
630
+
631
+ norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
632
+ c_ff_output = self.ff_c(norm_c)
633
+ c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
634
+
635
+ # process attention output for input x
636
+ x = x + x_gate_msa.unsqueeze(1) * x_attn_output
637
+
638
+ norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
639
+ x_ff_output = self.ff_x(norm_x)
640
+ x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
641
+
642
+ return c, x
643
+
644
+
645
+ # time step conditioning embedding
646
+
647
+
648
+ class TimestepEmbedding(nn.Module):
649
+ def __init__(self, dim, freq_embed_dim=256):
650
+ super().__init__()
651
+ self.time_embed = SinusPositionEmbedding(freq_embed_dim)
652
+ self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
653
+
654
+ def forward(self, timestep: float["b"]): # noqa: F821
655
+ time_hidden = self.time_embed(timestep)
656
+ time_hidden = time_hidden.to(timestep.dtype)
657
+ time = self.time_mlp(time_hidden) # b d
658
+ return time
model/trainer.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import gc
4
+ import os
5
+
6
+ import torch
7
+ import torchaudio
8
+ import wandb
9
+ from accelerate import Accelerator
10
+ from accelerate.utils import DistributedDataParallelKwargs
11
+ from ema_pytorch import EMA
12
+ from torch.optim import AdamW
13
+ from torch.optim.lr_scheduler import LinearLR, SequentialLR
14
+ from torch.utils.data import DataLoader, Dataset, SequentialSampler
15
+ from tqdm import tqdm
16
+
17
+ from f5_tts.model import CFM
18
+ from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
19
+ from f5_tts.model.utils import default, exists
20
+
21
+ # trainer
22
+
23
+
24
+ class Trainer:
25
+ def __init__(
26
+ self,
27
+ model: CFM,
28
+ epochs,
29
+ learning_rate,
30
+ num_warmup_updates=20000,
31
+ save_per_updates=1000,
32
+ checkpoint_path=None,
33
+ batch_size=32,
34
+ batch_size_type: str = "sample",
35
+ max_samples=32,
36
+ grad_accumulation_steps=1,
37
+ max_grad_norm=1.0,
38
+ noise_scheduler: str | None = None,
39
+ duration_predictor: torch.nn.Module | None = None,
40
+ logger: str | None = "wandb", # "wandb" | "tensorboard" | None
41
+ wandb_project="test_e2-tts",
42
+ wandb_run_name="test_run",
43
+ wandb_resume_id: str = None,
44
+ log_samples: bool = False,
45
+ last_per_steps=None,
46
+ accelerate_kwargs: dict = dict(),
47
+ ema_kwargs: dict = dict(),
48
+ bnb_optimizer: bool = False,
49
+ mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
50
+ ):
51
+ ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
52
+
53
+ if logger == "wandb" and not wandb.api.api_key:
54
+ logger = None
55
+ print(f"Using logger: {logger}")
56
+ self.log_samples = log_samples
57
+
58
+ self.accelerator = Accelerator(
59
+ log_with=logger if logger == "wandb" else None,
60
+ kwargs_handlers=[ddp_kwargs],
61
+ gradient_accumulation_steps=grad_accumulation_steps,
62
+ **accelerate_kwargs,
63
+ )
64
+
65
+ self.logger = logger
66
+ if self.logger == "wandb":
67
+ if exists(wandb_resume_id):
68
+ init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
69
+ else:
70
+ init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
71
+
72
+ self.accelerator.init_trackers(
73
+ project_name=wandb_project,
74
+ init_kwargs=init_kwargs,
75
+ config={
76
+ "epochs": epochs,
77
+ "learning_rate": learning_rate,
78
+ "num_warmup_updates": num_warmup_updates,
79
+ "batch_size": batch_size,
80
+ "batch_size_type": batch_size_type,
81
+ "max_samples": max_samples,
82
+ "grad_accumulation_steps": grad_accumulation_steps,
83
+ "max_grad_norm": max_grad_norm,
84
+ "gpus": self.accelerator.num_processes,
85
+ "noise_scheduler": noise_scheduler,
86
+ },
87
+ )
88
+
89
+ elif self.logger == "tensorboard":
90
+ from torch.utils.tensorboard import SummaryWriter
91
+
92
+ self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
93
+
94
+ self.model = model
95
+
96
+ if self.is_main:
97
+ self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
98
+ self.ema_model.to(self.accelerator.device)
99
+
100
+ self.epochs = epochs
101
+ self.num_warmup_updates = num_warmup_updates
102
+ self.save_per_updates = save_per_updates
103
+ self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps)
104
+ self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts")
105
+
106
+ self.batch_size = batch_size
107
+ self.batch_size_type = batch_size_type
108
+ self.max_samples = max_samples
109
+ self.grad_accumulation_steps = grad_accumulation_steps
110
+ self.max_grad_norm = max_grad_norm
111
+ self.vocoder_name = mel_spec_type
112
+
113
+ self.noise_scheduler = noise_scheduler
114
+
115
+ self.duration_predictor = duration_predictor
116
+
117
+ if bnb_optimizer:
118
+ import bitsandbytes as bnb
119
+
120
+ self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
121
+ else:
122
+ self.optimizer = AdamW(model.parameters(), lr=learning_rate)
123
+ self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)
124
+
125
+ @property
126
+ def is_main(self):
127
+ return self.accelerator.is_main_process
128
+
129
+ def save_checkpoint(self, step, last=False):
130
+ self.accelerator.wait_for_everyone()
131
+ if self.is_main:
132
+ checkpoint = dict(
133
+ model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
134
+ optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
135
+ ema_model_state_dict=self.ema_model.state_dict(),
136
+ scheduler_state_dict=self.scheduler.state_dict(),
137
+ step=step,
138
+ )
139
+ if not os.path.exists(self.checkpoint_path):
140
+ os.makedirs(self.checkpoint_path)
141
+ if last:
142
+ self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
143
+ print(f"Saved last checkpoint at step {step}")
144
+ else:
145
+ self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt")
146
+
147
+ def load_checkpoint(self):
148
+ if (
149
+ not exists(self.checkpoint_path)
150
+ or not os.path.exists(self.checkpoint_path)
151
+ or not os.listdir(self.checkpoint_path)
152
+ ):
153
+ return 0
154
+
155
+ self.accelerator.wait_for_everyone()
156
+ if "model_last.pt" in os.listdir(self.checkpoint_path):
157
+ latest_checkpoint = "model_last.pt"
158
+ else:
159
+ latest_checkpoint = sorted(
160
+ [f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")],
161
+ key=lambda x: int("".join(filter(str.isdigit, x))),
162
+ )[-1]
163
+ # checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
164
+ checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu")
165
+
166
+ # patch for backward compatibility, 305e3ea
167
+ for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
168
+ if key in checkpoint["ema_model_state_dict"]:
169
+ del checkpoint["ema_model_state_dict"][key]
170
+
171
+ if self.is_main:
172
+ self.ema_model.load_state_dict(checkpoint["ema_model_state_dict"])
173
+
174
+ if "step" in checkpoint:
175
+ # patch for backward compatibility, 305e3ea
176
+ for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
177
+ if key in checkpoint["model_state_dict"]:
178
+ del checkpoint["model_state_dict"][key]
179
+
180
+ self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
181
+ self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"])
182
+ if self.scheduler:
183
+ self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
184
+ step = checkpoint["step"]
185
+ else:
186
+ checkpoint["model_state_dict"] = {
187
+ k.replace("ema_model.", ""): v
188
+ for k, v in checkpoint["ema_model_state_dict"].items()
189
+ if k not in ["initted", "step"]
190
+ }
191
+ self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
192
+ step = 0
193
+
194
+ del checkpoint
195
+ gc.collect()
196
+ return step
197
+
198
+ def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
199
+ if self.log_samples:
200
+ from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
201
+
202
+ vocoder = load_vocoder(vocoder_name=self.vocoder_name)
203
+ target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate
204
+ log_samples_path = f"{self.checkpoint_path}/samples"
205
+ os.makedirs(log_samples_path, exist_ok=True)
206
+
207
+ if exists(resumable_with_seed):
208
+ generator = torch.Generator()
209
+ generator.manual_seed(resumable_with_seed)
210
+ else:
211
+ generator = None
212
+
213
+ if self.batch_size_type == "sample":
214
+ train_dataloader = DataLoader(
215
+ train_dataset,
216
+ collate_fn=collate_fn,
217
+ num_workers=num_workers,
218
+ pin_memory=True,
219
+ persistent_workers=True,
220
+ batch_size=self.batch_size,
221
+ shuffle=True,
222
+ generator=generator,
223
+ )
224
+ elif self.batch_size_type == "frame":
225
+ self.accelerator.even_batches = False
226
+ sampler = SequentialSampler(train_dataset)
227
+ batch_sampler = DynamicBatchSampler(
228
+ sampler, self.batch_size, max_samples=self.max_samples, random_seed=resumable_with_seed, drop_last=False
229
+ )
230
+ train_dataloader = DataLoader(
231
+ train_dataset,
232
+ collate_fn=collate_fn,
233
+ num_workers=num_workers,
234
+ pin_memory=True,
235
+ persistent_workers=True,
236
+ batch_sampler=batch_sampler,
237
+ )
238
+ else:
239
+ raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}")
240
+
241
+ # accelerator.prepare() dispatches batches to devices;
242
+ # which means the length of dataloader calculated before, should consider the number of devices
243
+ warmup_steps = (
244
+ self.num_warmup_updates * self.accelerator.num_processes
245
+ ) # consider a fixed warmup steps while using accelerate multi-gpu ddp
246
+ # otherwise by default with split_batches=False, warmup steps change with num_processes
247
+ total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps
248
+ decay_steps = total_steps - warmup_steps
249
+ warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps)
250
+ decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps)
251
+ self.scheduler = SequentialLR(
252
+ self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_steps]
253
+ )
254
+ train_dataloader, self.scheduler = self.accelerator.prepare(
255
+ train_dataloader, self.scheduler
256
+ ) # actual steps = 1 gpu steps / gpus
257
+ start_step = self.load_checkpoint()
258
+ global_step = start_step
259
+
260
+ if exists(resumable_with_seed):
261
+ orig_epoch_step = len(train_dataloader)
262
+ skipped_epoch = int(start_step // orig_epoch_step)
263
+ skipped_batch = start_step % orig_epoch_step
264
+ skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
265
+ else:
266
+ skipped_epoch = 0
267
+
268
+ for epoch in range(skipped_epoch, self.epochs):
269
+ self.model.train()
270
+ if exists(resumable_with_seed) and epoch == skipped_epoch:
271
+ progress_bar = tqdm(
272
+ skipped_dataloader,
273
+ desc=f"Epoch {epoch+1}/{self.epochs}",
274
+ unit="step",
275
+ disable=not self.accelerator.is_local_main_process,
276
+ initial=skipped_batch,
277
+ total=orig_epoch_step,
278
+ )
279
+ else:
280
+ progress_bar = tqdm(
281
+ train_dataloader,
282
+ desc=f"Epoch {epoch+1}/{self.epochs}",
283
+ unit="step",
284
+ disable=not self.accelerator.is_local_main_process,
285
+ )
286
+
287
+ for batch in progress_bar:
288
+ with self.accelerator.accumulate(self.model):
289
+ text_inputs = batch["text"]
290
+ mel_spec = batch["mel"].permute(0, 2, 1)
291
+ mel_lengths = batch["mel_lengths"]
292
+
293
+ # TODO. add duration predictor training
294
+ if self.duration_predictor is not None and self.accelerator.is_local_main_process:
295
+ dur_loss = self.duration_predictor(mel_spec, lens=batch.get("durations"))
296
+ self.accelerator.log({"duration loss": dur_loss.item()}, step=global_step)
297
+
298
+ loss, cond, pred = self.model(
299
+ mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
300
+ )
301
+ self.accelerator.backward(loss)
302
+
303
+ if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
304
+ self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
305
+
306
+ self.optimizer.step()
307
+ self.scheduler.step()
308
+ self.optimizer.zero_grad()
309
+
310
+ if self.is_main:
311
+ self.ema_model.update()
312
+
313
+ global_step += 1
314
+
315
+ if self.accelerator.is_local_main_process:
316
+ self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
317
+ if self.logger == "tensorboard":
318
+ self.writer.add_scalar("loss", loss.item(), global_step)
319
+ self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_step)
320
+
321
+ progress_bar.set_postfix(step=str(global_step), loss=loss.item())
322
+
323
+ if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
324
+ self.save_checkpoint(global_step)
325
+
326
+ if self.log_samples and self.accelerator.is_local_main_process:
327
+ ref_audio, ref_audio_len = vocoder.decode(batch["mel"][0].unsqueeze(0)), mel_lengths[0]
328
+ torchaudio.save(
329
+ f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio.cpu(), target_sample_rate
330
+ )
331
+ with torch.inference_mode():
332
+ generated, _ = self.accelerator.unwrap_model(self.model).sample(
333
+ cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
334
+ text=[text_inputs[0] + [" "] + text_inputs[0]],
335
+ duration=ref_audio_len * 2,
336
+ steps=nfe_step,
337
+ cfg_strength=cfg_strength,
338
+ sway_sampling_coef=sway_sampling_coef,
339
+ )
340
+ generated = generated.to(torch.float32)
341
+ gen_audio = vocoder.decode(
342
+ generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device)
343
+ )
344
+ torchaudio.save(
345
+ f"{log_samples_path}/step_{global_step}_gen.wav", gen_audio.cpu(), target_sample_rate
346
+ )
347
+
348
+ if global_step % self.last_per_steps == 0:
349
+ self.save_checkpoint(global_step, last=True)
350
+
351
+ self.save_checkpoint(global_step, last=True)
352
+
353
+ self.accelerator.end_training()