Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import time | |
| import random | |
| from tqdm import tqdm | |
| import argparse | |
| import torch | |
| import torchaudio | |
| from accelerate import Accelerator | |
| from einops import rearrange | |
| from ema_pytorch import EMA | |
| from vocos import Vocos | |
| from model import CFM, UNetT, DiT | |
| from model.utils import ( | |
| get_tokenizer, | |
| get_seedtts_testset_metainfo, | |
| get_librispeech_test_clean_metainfo, | |
| get_inference_prompt, | |
| ) | |
| accelerator = Accelerator() | |
| device = f"cuda:{accelerator.process_index}" | |
| # --------------------- Dataset Settings -------------------- # | |
| target_sample_rate = 24000 | |
| n_mel_channels = 100 | |
| hop_length = 256 | |
| target_rms = 0.1 | |
| tokenizer = "pinyin" | |
| # ---------------------- infer setting ---------------------- # | |
| parser = argparse.ArgumentParser(description="batch inference") | |
| parser.add_argument('-s', '--seed', default=None, type=int) | |
| parser.add_argument('-d', '--dataset', default="Emilia_ZH_EN") | |
| parser.add_argument('-n', '--expname', required=True) | |
| parser.add_argument('-c', '--ckptstep', default=1200000, type=int) | |
| parser.add_argument('-nfe', '--nfestep', default=32, type=int) | |
| parser.add_argument('-o', '--odemethod', default="euler") | |
| parser.add_argument('-ss', '--swaysampling', default=-1, type=float) | |
| parser.add_argument('-t', '--testset', required=True) | |
| args = parser.parse_args() | |
| seed = args.seed | |
| dataset_name = args.dataset | |
| exp_name = args.expname | |
| ckpt_step = args.ckptstep | |
| checkpoint = torch.load(f"ckpts/{exp_name}/model_{ckpt_step}.pt", map_location=device) | |
| nfe_step = args.nfestep | |
| ode_method = args.odemethod | |
| sway_sampling_coef = args.swaysampling | |
| testset = args.testset | |
| infer_batch_size = 1 # max frames. 1 for ddp single inference (recommended) | |
| cfg_strength = 2. | |
| speed = 1. | |
| use_truth_duration = False | |
| no_ref_audio = False | |
| if exp_name == "F5TTS_Base": | |
| model_cls = DiT | |
| model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4) | |
| elif exp_name == "E2TTS_Base": | |
| model_cls = UNetT | |
| model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4) | |
| if testset == "ls_pc_test_clean": | |
| metalst = "data/librispeech_pc_test_clean_cross_sentence.lst" | |
| librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path | |
| metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path) | |
| elif testset == "seedtts_test_zh": | |
| metalst = "data/seedtts_testset/zh/meta.lst" | |
| metainfo = get_seedtts_testset_metainfo(metalst) | |
| elif testset == "seedtts_test_en": | |
| metalst = "data/seedtts_testset/en/meta.lst" | |
| metainfo = get_seedtts_testset_metainfo(metalst) | |
| # path to save genereted wavs | |
| if seed is None: seed = random.randint(-10000, 10000) | |
| output_dir = f"results/{exp_name}_{ckpt_step}/{testset}/" \ | |
| f"seed{seed}_{ode_method}_nfe{nfe_step}" \ | |
| f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}" \ | |
| f"_cfg{cfg_strength}_speed{speed}" \ | |
| f"{'_gt-dur' if use_truth_duration else ''}" \ | |
| f"{'_no-ref-audio' if no_ref_audio else ''}" | |
| # -------------------------------------------------# | |
| use_ema = True | |
| prompts_all = get_inference_prompt( | |
| metainfo, | |
| speed = speed, | |
| tokenizer = tokenizer, | |
| target_sample_rate = target_sample_rate, | |
| n_mel_channels = n_mel_channels, | |
| hop_length = hop_length, | |
| target_rms = target_rms, | |
| use_truth_duration = use_truth_duration, | |
| infer_batch_size = infer_batch_size, | |
| ) | |
| # Vocoder model | |
| local = False | |
| if local: | |
| vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz" | |
| vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml") | |
| state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device) | |
| vocos.load_state_dict(state_dict) | |
| vocos.eval() | |
| else: | |
| vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") | |
| # Tokenizer | |
| vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer) | |
| # Model | |
| model = CFM( | |
| transformer = model_cls( | |
| **model_cfg, | |
| text_num_embeds = vocab_size, | |
| mel_dim = n_mel_channels | |
| ), | |
| mel_spec_kwargs = dict( | |
| target_sample_rate = target_sample_rate, | |
| n_mel_channels = n_mel_channels, | |
| hop_length = hop_length, | |
| ), | |
| odeint_kwargs = dict( | |
| method = ode_method, | |
| ), | |
| vocab_char_map = vocab_char_map, | |
| ).to(device) | |
| if use_ema == True: | |
| ema_model = EMA(model, include_online_model = False).to(device) | |
| ema_model.load_state_dict(checkpoint['ema_model_state_dict']) | |
| ema_model.copy_params_from_ema_to_model() | |
| else: | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| if not os.path.exists(output_dir) and accelerator.is_main_process: | |
| os.makedirs(output_dir) | |
| # start batch inference | |
| accelerator.wait_for_everyone() | |
| start = time.time() | |
| with accelerator.split_between_processes(prompts_all) as prompts: | |
| for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process): | |
| utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt | |
| ref_mels = ref_mels.to(device) | |
| ref_mel_lens = torch.tensor(ref_mel_lens, dtype = torch.long).to(device) | |
| total_mel_lens = torch.tensor(total_mel_lens, dtype = torch.long).to(device) | |
| # Inference | |
| with torch.inference_mode(): | |
| generated, _ = model.sample( | |
| cond = ref_mels, | |
| text = final_text_list, | |
| duration = total_mel_lens, | |
| lens = ref_mel_lens, | |
| steps = nfe_step, | |
| cfg_strength = cfg_strength, | |
| sway_sampling_coef = sway_sampling_coef, | |
| no_ref_audio = no_ref_audio, | |
| seed = seed, | |
| ) | |
| # Final result | |
| for i, gen in enumerate(generated): | |
| gen = gen[ref_mel_lens[i]:total_mel_lens[i], :].unsqueeze(0) | |
| gen_mel_spec = rearrange(gen, '1 n d -> 1 d n') | |
| generated_wave = vocos.decode(gen_mel_spec.cpu()) | |
| if ref_rms_list[i] < target_rms: | |
| generated_wave = generated_wave * ref_rms_list[i] / target_rms | |
| torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate) | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| timediff = time.time() - start | |
| print(f"Done batch inference in {timediff / 60 :.2f} minutes.") | |