Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from peft import PeftModel | |
st.set_page_config(page_title="Hugging Face Chatbot", layout="centered") | |
st.title("Hugging Face Chatbot with LoRA") | |
def load_model(): | |
# Replace this with the actual base model used during LoRA fine-tuning | |
base_model_name = "unsloth/Llama-3.2-1B-Instruct" | |
# Load the base model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_fast=False) | |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, trust_remote_code=True) | |
# Load the LoRA adapter weights | |
# Replace "Grandediw/lora_model_finetuned" with your actual LoRA model repo | |
model = PeftModel.from_pretrained(base_model, "Grandediw/lora_model_finetuned") | |
# Create a pipeline for text generation | |
chat_pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_length=64, | |
temperature=0.7, | |
top_p=0.9, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
return chat_pipeline | |
chat_pipeline = load_model() | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# User input | |
if prompt := st.chat_input("Ask me anything:"): | |
# Display user message | |
st.chat_message("user").markdown(prompt) | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Generate response | |
with st.spinner("Thinking..."): | |
# Generate text with the pipeline | |
response = chat_pipeline(prompt)[0]["generated_text"] | |
# Remove the prompt from the start if it's included | |
if response.startswith(prompt): | |
response = response[len(prompt):].strip() | |
# Display assistant response | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |