Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| from peft import PeftModel | |
| st.set_page_config(page_title="Hugging Face Chatbot", layout="centered") | |
| st.title("Hugging Face Chatbot with LoRA") | |
| def load_model(): | |
| # Replace this with the actual base model used during LoRA fine-tuning | |
| base_model_name = "unsloth/Llama-3.2-1B-Instruct" | |
| # Load the base model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_fast=False) | |
| base_model = AutoModelForCausalLM.from_pretrained(base_model_name, trust_remote_code=True) | |
| # Load the LoRA adapter weights | |
| # Replace "Grandediw/lora_model_finetuned" with your actual LoRA model repo | |
| model = PeftModel.from_pretrained(base_model, "Grandediw/lora_model_finetuned") | |
| # Create a pipeline for text generation | |
| chat_pipeline = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_length=64, | |
| temperature=0.7, | |
| top_p=0.9, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| return chat_pipeline | |
| chat_pipeline = load_model() | |
| # Initialize chat history | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| # Display chat messages from history | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| # User input | |
| if prompt := st.chat_input("Ask me anything:"): | |
| # Display user message | |
| st.chat_message("user").markdown(prompt) | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| # Generate response | |
| with st.spinner("Thinking..."): | |
| # Generate text with the pipeline | |
| response = chat_pipeline(prompt)[0]["generated_text"] | |
| # Remove the prompt from the start if it's included | |
| if response.startswith(prompt): | |
| response = response[len(prompt):].strip() | |
| # Display assistant response | |
| with st.chat_message("assistant"): | |
| st.markdown(response) | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |