Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,59 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
7 |
def respond(
|
8 |
message,
|
9 |
history: list[tuple[str, str]],
|
10 |
-
system_message,
|
11 |
max_tokens,
|
12 |
temperature,
|
13 |
top_p,
|
14 |
):
|
15 |
-
|
|
|
16 |
for user_message, assistant_message in history:
|
17 |
context += f"User: {user_message}\nAssistant: {assistant_message}\n"
|
18 |
context += f"User: {message}\nAssistant:"
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Build the Gradio ChatInterface
|
32 |
demo = gr.ChatInterface(
|
33 |
-
respond,
|
34 |
additional_inputs=[
|
35 |
-
gr.
|
36 |
-
gr.Slider(minimum=1, maximum=
|
37 |
-
gr.Slider(minimum=0.1, maximum=
|
38 |
-
gr.Slider(
|
39 |
-
minimum=0.1,
|
40 |
-
maximum=1.0,
|
41 |
-
value=0.95,
|
42 |
-
step=0.05,
|
43 |
-
label="Top-p (nucleus sampling)",
|
44 |
-
),
|
45 |
],
|
46 |
)
|
47 |
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
# Load the base model
|
7 |
+
base_model_name = "unsloth/llama-3.2-3b-instruct-bnb-4bit"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_fast=False)
|
9 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
base_model_name,
|
11 |
+
device_map="auto", # Automatically map layers to available devices
|
12 |
+
torch_dtype=torch.float16 # Ensure compatibility with 4-bit quantization
|
13 |
+
)
|
14 |
+
|
15 |
+
# Load the LoRA adapter
|
16 |
+
adapter_path = "Grandediw/lora_model" # Replace with your model path
|
17 |
+
model = PeftModel.from_pretrained(base_model, adapter_path)
|
18 |
+
model.eval() # Set the model to evaluation mode
|
19 |
|
20 |
+
# Define the inference function
|
21 |
def respond(
|
22 |
message,
|
23 |
history: list[tuple[str, str]],
|
|
|
24 |
max_tokens,
|
25 |
temperature,
|
26 |
top_p,
|
27 |
):
|
28 |
+
# Build context from history
|
29 |
+
context = ""
|
30 |
for user_message, assistant_message in history:
|
31 |
context += f"User: {user_message}\nAssistant: {assistant_message}\n"
|
32 |
context += f"User: {message}\nAssistant:"
|
33 |
|
34 |
+
# Tokenize the input
|
35 |
+
inputs = tokenizer(context, return_tensors="pt").to("cuda")
|
36 |
+
|
37 |
+
# Generate a response
|
38 |
+
outputs = model.generate(
|
39 |
+
input_ids=inputs.input_ids,
|
40 |
+
max_new_tokens=max_tokens,
|
41 |
+
temperature=temperature,
|
42 |
+
top_p=top_p,
|
43 |
+
do_sample=True
|
44 |
+
)
|
45 |
+
|
46 |
+
# Decode and return the response
|
47 |
+
response = tokenizer.decode(outputs[:, inputs.input_ids.shape[-1]:][0], skip_special_tokens=True)
|
48 |
+
return response
|
49 |
|
50 |
# Build the Gradio ChatInterface
|
51 |
demo = gr.ChatInterface(
|
52 |
+
fn=respond,
|
53 |
additional_inputs=[
|
54 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
|
55 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"),
|
56 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
],
|
58 |
)
|
59 |
|