Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,198 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import os
|
4 |
-
import spaces
|
5 |
-
import uuid
|
6 |
|
7 |
-
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
|
8 |
-
from diffusers.utils import export_to_video
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
-
from safetensors.torch import load_file
|
11 |
-
from PIL import Image
|
12 |
-
from gradio_client import Client, file
|
13 |
-
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# Safety checkers
|
38 |
-
from safety_checker import StableDiffusionSafetyChecker
|
39 |
-
from transformers import CLIPFeatureExtractor
|
40 |
-
|
41 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device)
|
42 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
|
43 |
-
|
44 |
-
def check_nsfw_images(images: list[Image.Image]) -> list[bool]:
|
45 |
-
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
|
46 |
-
has_nsfw_concepts = safety_checker(images=[images], clip_input=safety_checker_input.pixel_values.to(device))
|
47 |
-
return has_nsfw_concepts
|
48 |
-
|
49 |
-
# Function
|
50 |
-
@spaces.GPU(enable_queue=True)
|
51 |
-
def generate_image(prompt, base, motion, step, progress=gr.Progress()):
|
52 |
-
global step_loaded
|
53 |
-
global base_loaded
|
54 |
-
global motion_loaded
|
55 |
-
print(prompt, base, step)
|
56 |
-
|
57 |
-
if step_loaded != step:
|
58 |
-
repo = "ByteDance/AnimateDiff-Lightning"
|
59 |
-
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
60 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
61 |
-
step_loaded = step
|
62 |
-
|
63 |
-
if base_loaded != base:
|
64 |
-
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
|
65 |
-
base_loaded = base
|
66 |
-
|
67 |
-
if motion_loaded != motion:
|
68 |
-
pipe.unload_lora_weights()
|
69 |
-
if motion != "":
|
70 |
-
pipe.load_lora_weights(motion, adapter_name="motion")
|
71 |
-
pipe.set_adapters(["motion"], [0.7])
|
72 |
-
motion_loaded = motion
|
73 |
-
|
74 |
-
progress((0, step))
|
75 |
-
def progress_callback(i, t, z):
|
76 |
-
progress((i+1, step))
|
77 |
-
|
78 |
-
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step, callback=progress_callback, callback_steps=1)
|
79 |
-
|
80 |
-
has_nsfw_concepts = check_nsfw_images([output.frames[0][0]])
|
81 |
-
if has_nsfw_concepts[0]:
|
82 |
-
gr.Warning("NSFW content detected.")
|
83 |
-
return None
|
84 |
-
|
85 |
-
name = str(uuid.uuid4()).replace("-", "")
|
86 |
-
video_path = f"/tmp/{name}.mp4"
|
87 |
-
export_to_video(output.frames[0], video_path, fps=10)
|
88 |
-
|
89 |
-
audio_path = tango2(prompt)
|
90 |
-
final_video_path = fuse_together(audio_path, video_path)
|
91 |
-
|
92 |
-
return final_video_path
|
93 |
-
|
94 |
-
|
95 |
-
def tango2(prompt):
|
96 |
-
results = client.predict(
|
97 |
-
prompt=prompt,
|
98 |
-
steps=100,
|
99 |
-
guidance=3,
|
100 |
-
api_name="/predict"
|
101 |
-
)
|
102 |
-
return results
|
103 |
-
|
104 |
-
def fuse_together(audio, video):
|
105 |
-
|
106 |
-
# Load your video and audio files
|
107 |
-
video_clip = VideoFileClip(video)
|
108 |
-
audio_clip = AudioFileClip(audio)
|
109 |
-
|
110 |
-
# Loop the video twice
|
111 |
-
looped_video = concatenate_videoclips([video_clip, video_clip])
|
112 |
-
|
113 |
-
# Cut the audio to match the duration of the looped video
|
114 |
-
looped_audio = audio_clip.subclip(0, looped_video.duration)
|
115 |
-
|
116 |
-
# Set the audio of the looped video to the adjusted audio clip
|
117 |
-
final_video = looped_video.set_audio(looped_audio)
|
118 |
-
|
119 |
-
# Write the result to a file (output will be twice the length of the original video)
|
120 |
-
name = str(uuid.uuid4()).replace("-", "")
|
121 |
-
path = f"/tmp/{name}.mp4"
|
122 |
-
final_video.write_videofile(path, codec="libx264", audio_codec="aac")
|
123 |
-
|
124 |
-
return path
|
125 |
-
|
126 |
-
|
127 |
-
# Gradio Interface
|
128 |
-
with gr.Blocks(css="style.css") as demo:
|
129 |
-
gr.HTML(
|
130 |
-
"<h1><center>AnimateDiff-Lightning⚡ + TANGO 2</center></h1>" +
|
131 |
-
"<p><center>Using Gradio Python Client to combine <b>AnimateDiff Lightning</b> with <b>Tango2</b> to give Voice to your Generated Videos</center></p>" +
|
132 |
-
"<p><center>Refer Gradio Guide for Python Clients here :<a href='https://www.gradio.app/guides/getting-started-with-the-python-client'>Getting Started with the Gradio Python client</a></center></p>"
|
133 |
-
)
|
134 |
-
with gr.Group():
|
135 |
-
with gr.Row():
|
136 |
-
prompt = gr.Textbox(
|
137 |
-
label='Prompt (English)'
|
138 |
-
)
|
139 |
-
with gr.Row():
|
140 |
-
select_base = gr.Dropdown(
|
141 |
-
label='Base model',
|
142 |
-
choices=[
|
143 |
-
"ToonYou",
|
144 |
-
"epiCRealism",
|
145 |
-
],
|
146 |
-
value=base_loaded,
|
147 |
-
interactive=True
|
148 |
-
)
|
149 |
-
select_motion = gr.Dropdown(
|
150 |
-
label='Motion',
|
151 |
-
choices=[
|
152 |
-
("Default", ""),
|
153 |
-
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
|
154 |
-
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
|
155 |
-
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
|
156 |
-
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
|
157 |
-
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
|
158 |
-
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
|
159 |
-
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
|
160 |
-
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
|
161 |
-
],
|
162 |
-
value="",
|
163 |
-
interactive=True
|
164 |
-
)
|
165 |
-
select_step = gr.Dropdown(
|
166 |
-
label='Inference steps',
|
167 |
-
choices=[
|
168 |
-
('1-Step', 1),
|
169 |
-
('2-Step', 2),
|
170 |
-
('4-Step', 4),
|
171 |
-
('8-Step', 8)],
|
172 |
-
value=4,
|
173 |
-
interactive=True
|
174 |
-
)
|
175 |
-
submit = gr.Button(
|
176 |
-
scale=1,
|
177 |
-
variant='primary'
|
178 |
-
)
|
179 |
-
video = gr.Video(
|
180 |
-
label='AnimateDiff-Lightning',
|
181 |
-
autoplay=True,
|
182 |
-
height=512,
|
183 |
-
width=512,
|
184 |
-
elem_id="video_output"
|
185 |
-
)
|
186 |
-
|
187 |
-
prompt.submit(
|
188 |
-
fn=generate_image,
|
189 |
-
inputs=[prompt, select_base, select_motion, select_step],
|
190 |
-
outputs=video,
|
191 |
-
)
|
192 |
-
submit.click(
|
193 |
-
fn=generate_image,
|
194 |
-
inputs=[prompt, select_base, select_motion, select_step],
|
195 |
-
outputs=video,
|
196 |
-
)
|
197 |
-
|
198 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
with gr.Blocks() as demo:
|
5 |
+
with gr.Row():
|
6 |
+
with gr.Column(visible=False, min_width=200, scale=0) as sidebar:
|
7 |
+
btn1 = gr.Button("Button 1")
|
8 |
+
btn2 = gr.Button("Button 2")
|
9 |
+
with gr.Column() as main:
|
10 |
+
open_sidebar_btn = gr.Button("Open Sidebar", scale=0)
|
11 |
+
close_sidebar_btn = gr.Button("Close Sidebar", visible=False, scale=0)
|
12 |
+
open_sidebar_btn.click(lambda: {
|
13 |
+
open_sidebar_btn: gr.Button(visible=False),
|
14 |
+
close_sidebar_btn: gr.Button(visible=True),
|
15 |
+
sidebar: gr.Column(visible=True)
|
16 |
+
}, outputs={open_sidebar_btn, close_sidebar_btn, sidebar})
|
17 |
+
close_sidebar_btn.click(lambda: {
|
18 |
+
open_sidebar_btn: gr.Button(visible=True),
|
19 |
+
close_sidebar_btn: gr.Button(visible=False),
|
20 |
+
sidebar: gr.Column(visible=False)
|
21 |
+
}, outputs={open_sidebar_btn, close_sidebar_btn, sidebar})
|
22 |
+
gr.Markdown("# Hello Blocks")
|
23 |
+
gr.Markdown("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nec nulla nec nulla fermentum fermentum. Nullam nec nulla nec nulla fermentum fermentum.")
|
24 |
+
|
25 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|