Spaces:
Runtime error
Runtime error
import time | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, LlavaForConditionalGeneration | |
from transformers import TextIteratorStreamer | |
import spaces | |
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = LlavaForConditionalGeneration.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
) | |
model.to("cuda:0") | |
model.generation_config.eos_token_id = 128009 | |
def bot_streaming(message, history): | |
print(message) | |
if message["files"]: | |
# message["files"][-1] is a Dict or just a string | |
if type(message["files"][-1]) == dict: | |
image = message["files"][-1]["path"] | |
else: | |
image = message["files"][-1] | |
else: | |
# if there's no image uploaded for this turn, look for images in the past turns | |
# kept inside tuples, take the last one | |
for hist in history: | |
if type(hist[0]) == tuple: | |
image = hist[0][0] | |
try: | |
if image is None: | |
# Handle the case where image is None | |
gr.Error("You need to upload an image for LLaVA to work.") | |
except NameError: | |
# Handle the case where 'image' is not defined at all | |
gr.Error("You need to upload an image for LLaVA to work.") | |
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
# print(f"prompt: {prompt}") | |
image = Image.open(image) | |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) | |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
# print(f"text_prompt: {text_prompt}") | |
buffer = "" | |
time.sleep(0.5) | |
for new_text in streamer: | |
# find <|eot_id|> and remove it from the new_text | |
if "<|eot_id|>" in new_text: | |
new_text = new_text.split("<|eot_id|>")[0] | |
buffer += new_text | |
# generated_text_without_prompt = buffer[len(text_prompt):] | |
generated_text_without_prompt = buffer | |
# print(generated_text_without_prompt) | |
time.sleep(0.06) | |
# print(f"new_text: {generated_text_without_prompt}") | |
yield generated_text_without_prompt | |
demo = gr.ChatInterface( | |
fn=bot_streaming, | |
fill_height=False, | |
title="LLaVA Llama-3-8B", | |
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, | |
{"text": "How to make this pastry?", "files": ["./baklava.png"]}], | |
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", | |
stop_btn="Stop Generation", | |
multimodal=True | |
) | |
demo.queue(api_open=False) | |
demo.launch(show_api=False, share=False) | |