SakuraD's picture
update
37b7a23
import os
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
from mmseg.core.evaluation import get_palette
import mmcv
import gradio as gr
from huggingface_hub import hf_hub_download
# Device on which to run the model
# Set to cuda to load on GPU
device = "cpu"
checkpoint_file = hf_hub_download(repo_id="Andy1621/uniformer", filename="upernet_global_small.pth")
config_file = './exp/upernet_global_small/config.py'
# init detector
# build the model from a config file and a checkpoint file
model = init_segmentor(config_file, checkpoint_file, device='cpu')
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def inference(img):
result = inference_segmentor(model, img)
res_img = show_result_pyplot(model, img, result, get_palette('ade'))
return res_img
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# UniFormer-S
Gradio demo for <a href='https://github.com/Sense-X/UniFormer' target='_blank'>UniFormer</a>: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.
"""
)
with gr.Box():
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image', type='numpy')
with gr.Row():
submit_button = gr.Button('Submit')
with gr.Column():
res_image = gr.Image(type='numpy', label='Segmentation Resutls')
with gr.Row():
example_images = gr.Dataset(components=[input_image], samples=[['demo1.jpg'], ['demo2.jpg'], ['demo3.jpg']])
gr.Markdown(
"""
<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>
"""
)
submit_button.click(fn=inference, inputs=input_image, outputs=res_image)
example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components)
demo.launch(enable_queue=True)