StyleGAN-NADA / generate_videos.py
rinong's picture
Cloned official repo for the party
7143243
import os
import argparse
import torch
from torchvision import utils
from model.sg2_model import Generator
from tqdm import tqdm
from pathlib import Path
import numpy as np
import subprocess
import shutil
import copy
from styleclip.styleclip_global import style_tensor_to_style_dict, style_dict_to_style_tensor
VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"]
SUGGESTED_DISTANCES = {
"pose": 3.0,
"smile": 2.0,
"age": 4.0,
"gender": 3.0,
"hair_length": -4.0,
"beard": 2.0
}
def project_code(latent_code, boundary, distance=3.0):
if len(boundary) == 2:
boundary = boundary.reshape(1, 1, -1)
return latent_code + distance * boundary
def project_code_by_edit_name(latent_code, name, strength):
boundary_dir = Path(os.path.abspath(__file__)).parents[0].joinpath("editing", "interfacegan_boundaries")
distance = SUGGESTED_DISTANCES[name] * strength
boundary = torch.load(os.path.join(boundary_dir, f'{name}.pt'), map_location="cpu").numpy()
return project_code(latent_code, boundary, distance)
def generate_frames(source_latent, target_latents, g_ema_list, output_dir):
device = "cuda" if torch.cuda.is_available() else "cpu"
code_is_s = target_latents[0].size()[1] == 9088
if code_is_s:
source_s_dict = g_ema_list[0].get_s_code(source_latent, input_is_latent=True)[0]
np_latent = style_dict_to_style_tensor(source_s_dict, g_ema_list[0]).cpu().detach().numpy()
else:
np_latent = source_latent.squeeze(0).cpu().detach().numpy()
np_target_latents = [target_latent.cpu().detach().numpy() for target_latent in target_latents]
num_alphas = 20 if code_is_s else min(10, 30 // len(target_latents))
alphas = np.linspace(0, 1, num=num_alphas)
latents = interpolate_with_target_latents(np_latent, np_target_latents, alphas)
segments = len(g_ema_list) - 1
if segments:
segment_length = len(latents) / segments
g_ema = copy.deepcopy(g_ema_list[0])
src_pars = dict(g_ema.named_parameters())
mix_pars = [dict(model.named_parameters()) for model in g_ema_list]
else:
g_ema = g_ema_list[0]
print("Generating frames for video...")
for idx, latent in tqdm(enumerate(latents), total=len(latents)):
if segments:
mix_alpha = (idx % segment_length) * 1.0 / segment_length
segment_id = int(idx // segment_length)
for k in src_pars.keys():
src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha)
if idx == 0 or segments or latent is not latents[idx - 1]:
latent_tensor = torch.from_numpy(latent).float().to(device)
with torch.no_grad():
if code_is_s:
latent_for_gen = style_tensor_to_style_dict(latent_tensor, g_ema)
img, _ = g_ema(latent_for_gen, input_is_s_code=True, input_is_latent=True, truncation=1, randomize_noise=False)
else:
img, _ = g_ema([latent_tensor], input_is_latent=True, truncation=1, randomize_noise=False)
utils.save_image(img, f"{output_dir}/{str(idx).zfill(3)}.jpg", nrow=1, normalize=True, scale_each=True, range=(-1, 1))
def interpolate_forward_backward(source_latent, target_latent, alphas):
latents_forward = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target
latents_backward = latents_forward[::-1] # interpolate from target to source
return latents_forward + [target_latent] * len(alphas) + latents_backward # forward + short delay at target + return
def interpolate_with_target_latents(source_latent, target_latents, alphas):
# interpolate latent codes with all targets
print("Interpolating latent codes...")
latents = []
for target_latent in target_latents:
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
return latents
def video_from_interpolations(fps, output_dir):
# combine frames to a video
command = ["ffmpeg",
"-r", f"{fps}",
"-i", f"{output_dir}/%03d.jpg",
"-c:v", "libx264",
"-vf", f"fps={fps}",
"-pix_fmt", "yuv420p",
f"{output_dir}/out.mp4"]
subprocess.call(command)