|
from functools import partial |
|
from itertools import product |
|
from .core import make_vjp, make_jvp, vspace |
|
from .util import subvals |
|
from .wrap_util import unary_to_nary, get_name |
|
|
|
TOL = 1e-6 |
|
RTOL = 1e-6 |
|
def scalar_close(a, b): |
|
return abs(a - b) < TOL or abs(a - b) / abs(a + b) < RTOL |
|
|
|
EPS = 1e-6 |
|
def make_numerical_jvp(f, x): |
|
y = f(x) |
|
x_vs, y_vs = vspace(x), vspace(y) |
|
def jvp(v): |
|
|
|
f_x_plus = f(x_vs.add(x, x_vs.scalar_mul(v, EPS/2))) |
|
f_x_minus = f(x_vs.add(x, x_vs.scalar_mul(v, -EPS/2))) |
|
neg_f_x_minus = y_vs.scalar_mul(f_x_minus, -1.0) |
|
return y_vs.scalar_mul(y_vs.add(f_x_plus, neg_f_x_minus), 1.0 / EPS) |
|
return jvp |
|
|
|
def check_vjp(f, x): |
|
vjp, y = make_vjp(f, x) |
|
jvp = make_numerical_jvp(f, x) |
|
x_vs, y_vs = vspace(x), vspace(y) |
|
x_v, y_v = x_vs.randn(), y_vs.randn() |
|
|
|
vjp_y = x_vs.covector(vjp(y_vs.covector(y_v))) |
|
assert vspace(vjp_y) == x_vs |
|
vjv_exact = x_vs.inner_prod(x_v, vjp_y) |
|
vjv_numeric = y_vs.inner_prod(y_v, jvp(x_v)) |
|
assert scalar_close(vjv_numeric, vjv_exact), \ |
|
("Derivative (VJP) check of {} failed with arg {}:\n" |
|
"analytic: {}\nnumeric: {}".format( |
|
get_name(f), x, vjv_exact, vjv_numeric)) |
|
|
|
def check_jvp(f, x): |
|
jvp = make_jvp(f, x) |
|
jvp_numeric = make_numerical_jvp(f, x) |
|
x_v = vspace(x).randn() |
|
check_equivalent(jvp(x_v)[1], jvp_numeric(x_v)) |
|
|
|
def check_equivalent(x, y): |
|
x_vs, y_vs = vspace(x), vspace(y) |
|
assert x_vs == y_vs, "VSpace mismatch:\nx: {}\ny: {}".format(x_vs, y_vs) |
|
v = x_vs.randn() |
|
assert scalar_close(x_vs.inner_prod(x, v), x_vs.inner_prod(y, v)), \ |
|
"Value mismatch:\nx: {}\ny: {}".format(x, y) |
|
|
|
@unary_to_nary |
|
def check_grads(f, x, modes=['fwd', 'rev'], order=2): |
|
assert all(m in ['fwd', 'rev'] for m in modes) |
|
if 'fwd' in modes: |
|
check_jvp(f, x) |
|
if order > 1: |
|
grad_f = lambda x, v: make_jvp(f, x)(v)[1] |
|
grad_f.__name__ = 'jvp_{}'.format(get_name(f)) |
|
v = vspace(x).randn() |
|
check_grads(grad_f, (0, 1), modes, order=order-1)(x, v) |
|
if 'rev' in modes: |
|
check_vjp(f, x) |
|
if order > 1: |
|
grad_f = lambda x, v: make_vjp(f, x)[0](v) |
|
grad_f.__name__ = 'vjp_{}'.format(get_name(f)) |
|
v = vspace(f(x)).randn() |
|
check_grads(grad_f, (0, 1), modes, order=order-1)(x, v) |
|
|
|
def combo_check(fun, *args, **kwargs): |
|
|
|
_check_grads = lambda f: check_grads(f, *args, **kwargs) |
|
def _combo_check(*args, **kwargs): |
|
kwarg_key_vals = [[(k, x) for x in xs] for k, xs in kwargs.items()] |
|
for _args in product(*args): |
|
for _kwargs in product(*kwarg_key_vals): |
|
_check_grads(fun)(*_args, **dict(_kwargs)) |
|
return _combo_check |
|
|