Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| import torch | |
| from peft import LoraConfig, PeftModel | |
| base_model_name = "microsoft/phi-2" | |
| new_model = "./checkpoint_360" | |
| model = AutoModelForCausalLM.from_pretrained( "microsoft/phi-2", trust_remote_code=True) | |
| model.config.use_cache = False | |
| model.load_adapter(new_model) | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "right" | |
| def QLoRA_Chatgpt(prompt): | |
| print(prompt) | |
| pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200) | |
| result = pipe(f"<s>[INST] {prompt} [/INST]") | |
| return(result[0]['generated_text']) | |
| # return "Hello " + name + "!!" | |
| # Define Interface | |
| description = 'An AI assistant that works on the Microsoft Phi 2 model, which has been finetuned on the Open Assistant dataset using the QLora method, operates effectively. ' | |
| title = 'AI Chat bot finetuned on Microsoft Phi 2 model using QLORA' | |
| iface = gr.Interface(fn=QLoRA_Chatgpt, inputs=gr.Textbox("how can help you today", label='prompt'), outputs=gr.Textbox(label='Generated-output',scale = 2), title = title, | |
| description = description) | |
| iface.launch(share=True) | |