Yolo_V3 / model.py
Gosula's picture
Update model.py
c38adc8
raw
history blame
12.2 kB
"""
Implementation of YOLOv3 architecture
"""
import os
import pytorch_lightning as pl
import pandas as pd
import seaborn as sn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from IPython.core.display import display
#from pl_bolts.datamodules import CIFAR10DataModule
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch.optim.lr_scheduler import OneCycleLR
from torchmetrics.functional import accuracy
import torch.cuda.amp as amp
from torch.utils.data import DataLoader
from loss import YoloLoss
from pytorch_lightning import LightningModule, Trainer
from torch.optim.lr_scheduler import OneCycleLR
from torch_lr_finder import LRFinder
import torch.nn as nn
from dataset import YOLODataset
import config
import torch
import torch.optim as optim
import os
from model import YOLOv3
from tqdm import tqdm
from utils import (
mean_average_precision,
cells_to_bboxes,
get_evaluation_bboxes,
save_checkpoint,
load_checkpoint,
check_class_accuracy,
get_loaders,
plot_couple_examples
)
from loss import YoloLoss
import warnings
from pytorch_lightning import LightningModule
import torch
from loss import YoloLoss
import torch.nn as nn
import config
"""
Information about architecture config:
Tuple is structured by (filters, kernel_size, stride)
Every conv is a same convolution.
List is structured by "B" indicating a residual block followed by the number of repeats
"S" is for scale prediction block and computing the yolo loss
"U" is for upsampling the feature map and concatenating with a previous layer
"""
config_1 = [
(32, 3, 1),
(64, 3, 2),
["B", 1],
(128, 3, 2),
["B", 2],
(256, 3, 2),
["B", 8],
(512, 3, 2),
["B", 8],
(1024, 3, 2),
["B", 4], # To this point is Darknet-53
(512, 1, 1),
(1024, 3, 1),
"S",
(256, 1, 1),
"U",
(256, 1, 1),
(512, 3, 1),
"S",
(128, 1, 1),
"U",
(128, 1, 1),
(256, 3, 1),
"S",
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
self.leaky = nn.LeakyReLU(0.1)
self.use_bn_act = bn_act
def forward(self, x):
if self.use_bn_act:
return self.leaky(self.bn(self.conv(x)))
else:
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels, use_residual=True, num_repeats=1):
super().__init__()
self.layers = nn.ModuleList()
for repeat in range(num_repeats):
self.layers += [
nn.Sequential(
CNNBlock(channels, channels // 2, kernel_size=1),
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
)
]
self.use_residual = use_residual
self.num_repeats = num_repeats
def forward(self, x):
for layer in self.layers:
if self.use_residual:
x = x + layer(x)
else:
x = layer(x)
return x
class ScalePrediction(nn.Module):
def __init__(self, in_channels, num_classes):
super().__init__()
self.pred = nn.Sequential(
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
CNNBlock(
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
),
)
self.num_classes = num_classes
def forward(self, x):
return (
self.pred(x)
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
.permute(0, 1, 3, 4, 2)
)
class YOLOv3(LightningModule):
def __init__(self, in_channels=3, num_classes=80):
super().__init__()
self.num_classes = num_classes
self.in_channels = in_channels
self.layers = self._create_conv_layers()
def forward(self, x):
outputs = [] # for each scale
route_connections = []
for layer in self.layers:
if isinstance(layer, ScalePrediction):
outputs.append(layer(x))
continue
x = layer(x)
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
route_connections.append(x)
elif isinstance(layer, nn.Upsample):
x = torch.cat([x, route_connections[-1]], dim=1)
route_connections.pop()
return outputs
def _create_conv_layers(self):
layers = nn.ModuleList()
in_channels = self.in_channels
for module in config_1:
if isinstance(module, tuple):
out_channels, kernel_size, stride = module
layers.append(
CNNBlock(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=1 if kernel_size == 3 else 0,
)
)
in_channels = out_channels
elif isinstance(module, list):
num_repeats = module[1]
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
elif isinstance(module, str):
if module == "S":
layers += [
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
]
in_channels = in_channels // 2
elif module == "U":
layers.append(nn.Upsample(scale_factor=2),)
in_channels = in_channels * 3
return layers
class YoloVersion3(LightningModule):
def __init__(self):
super(YoloVersion3, self).__init__( )
self.save_hyperparameters()
# Set our init args as class attributes
self.learning_rate=config.LEARNING_RATE
#self.config=config
self.num_classes=config.NUM_CLASSES
self.train_csv=config.DATASET + "/train.csv"
self.test_csv=config.DATASET + "/test.csv"
self.loss_fn= YoloLoss()
self.scaler = amp.GradScaler()
#self.train_transform_function= config.train_transforms
#self.in_channels = 3
self.model= YOLOv3(num_classes=config.NUM_CLASSES).to(config.DEVICE)
self.scaled_anchors = (
torch.tensor(config.ANCHORS) * torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)).to(config.DEVICE)
#self.register_buffer("scaled_anchors", self.scaled_anchors)
self.training_step_outputs = []
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
y0, y1, y2 = (
y[0],
y[1],
y[2],
)
out = self(x)
loss = (
self.loss_fn(out[0], y0, self.scaled_anchors[0])
+ self.loss_fn(out[1], y1, self.scaled_anchors[1])
+ self.loss_fn(out[2], y2, self.scaled_anchors[2])
)
self.log("train_loss", loss, on_epoch=True, prog_bar=True, logger=True) # Logging the training loss for visualization
self.training_step_outputs.append(loss)
return loss
def on_train_epoch_end(self):
print(f"\nCurrently epoch {self.current_epoch}")
train_epoch_average = torch.stack(self.training_step_outputs).mean()
self.training_step_outputs.clear()
print(f"Train loss {train_epoch_average}")
print("On Train Eval loader:")
print("On Train loader:")
class_accuracy, no_obj_accuracy, obj_accuracy = check_class_accuracy(self.model, self.train_loader, threshold=config.CONF_THRESHOLD)
self.log("class_accuracy", class_accuracy, on_epoch=True, prog_bar=True, logger=True)
self.log("no_obj_accuracy", no_obj_accuracy, on_epoch=True, prog_bar=True, logger=True)
self.log("obj_accuracy", obj_accuracy, on_epoch=True, prog_bar=True, logger=True)
if (self.current_epoch>0) and ((self.current_epoch+1) % 6 == 0): # for every 10 epochs we are plotting
plot_couple_examples(self.model, self.test_loader, 0.6, 0.5, self.scaled_anchors)
if (self.current_epoch>0) and (self.current_epoch+1 == self.trainer.max_epochs ): #map calculation across last epoch
check_class_accuracy(self.model, self.test_loader, threshold=config.CONF_THRESHOLD)
pred_boxes, true_boxes = get_evaluation_bboxes(
self.test_loader,
self.model,
iou_threshold=config.NMS_IOU_THRESH,
anchors=config.ANCHORS,
threshold=config.CONF_THRESHOLD,
)
mapval = mean_average_precision(
pred_boxes,
true_boxes,
iou_threshold=config.MAP_IOU_THRESH,
box_format="midpoint",
num_classes=config.NUM_CLASSES,
)
print(f"MAP: {mapval.item()}")
self.log("MAP", mapval.item(), on_epoch=True, prog_bar=True, logger=True)
def configure_optimizers(self):
optimizer = optim.Adam(
self.parameters(),
lr=config.LEARNING_RATE,
weight_decay=config.WEIGHT_DECAY,
)
self.trainer.fit_loop.setup_data()
dataloader = self.trainer.train_dataloader
EPOCHS = config.NUM_EPOCHS # 40 % of number of epochs
lr_scheduler = OneCycleLR(
optimizer,
max_lr=1E-3,
steps_per_epoch=len(dataloader),
epochs=EPOCHS,
pct_start=5/EPOCHS,
div_factor=100,
three_phase=False,
final_div_factor=100,
anneal_strategy='linear'
)
scheduler = {"scheduler": lr_scheduler, "interval" : "step"}
return [optimizer]
def setup(self, stage=None):
self.train_loader, self.test_loader, self.train_eval_loader = get_loaders(
train_csv_path=self.train_csv,
test_csv_path=self.test_csv,
)
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.train_eval_loader
def test_dataloader(self):
return self.test_loader
# if __name__ == "__main__":
# model = YoloVersion3()
# checkpoint = ModelCheckpoint(filename='last_epoch', save_last=True)
# lr_rate_monitor = LearningRateMonitor(logging_interval="epoch")
# trainer = pl.Trainer(
# max_epochs=config.NUM_EPOCHS,
# deterministic=True,
# logger=True,
# default_root_dir="/content/drive/MyDrive/sunandini/Checkpoint/",
# callbacks=[lr_rate_monitor],
# enable_model_summary=False,
# log_every_n_steps=1,
# precision="16-mixed"
# )
# print("---- Training Started ---- Sunandini ----")
# trainer.fit(model)
# torch.save(model.state_dict(), 'YOLOv3.pth')
if __name__ == "__main__":
num_classes = 20
IMAGE_SIZE = 416
model = YOLOv3(num_classes=num_classes)
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
out = model(x)
assert model(x)[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
assert model(x)[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
assert model(x)[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
print("Success!")