Yolo_V3 / model.py
Gosula's picture
Update model.py
cbf223e
raw
history blame
12.2 kB
"""
Implementation of YOLOv3 architecture
"""
import os
import pytorch_lightning as pl
import pandas as pd
import seaborn as sn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from IPython.core.display import display
#from pl_bolts.datamodules import CIFAR10DataModule
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch.optim.lr_scheduler import OneCycleLR
from torchmetrics.functional import accuracy
import torch.cuda.amp as amp
from torch.utils.data import DataLoader
from loss import YoloLoss
from pytorch_lightning import LightningModule, Trainer
from torch.optim.lr_scheduler import OneCycleLR
from torch_lr_finder import LRFinder
import torch.nn as nn
from dataset import YOLODataset
import config
import torch
import torch.optim as optim
import os
#from model import YOLOv3
from tqdm import tqdm
from utils import (
mean_average_precision,
cells_to_bboxes,
get_evaluation_bboxes,
save_checkpoint,
load_checkpoint,
check_class_accuracy,
get_loaders,
plot_couple_examples
)
from loss import YoloLoss
import warnings
from pytorch_lightning import LightningModule
import torch
from loss import YoloLoss
import torch.nn as nn
import config
"""
Information about architecture config:
Tuple is structured by (filters, kernel_size, stride)
Every conv is a same convolution.
List is structured by "B" indicating a residual block followed by the number of repeats
"S" is for scale prediction block and computing the yolo loss
"U" is for upsampling the feature map and concatenating with a previous layer
"""
config_1 = [
(32, 3, 1),
(64, 3, 2),
["B", 1],
(128, 3, 2),
["B", 2],
(256, 3, 2),
["B", 8],
(512, 3, 2),
["B", 8],
(1024, 3, 2),
["B", 4], # To this point is Darknet-53
(512, 1, 1),
(1024, 3, 1),
"S",
(256, 1, 1),
"U",
(256, 1, 1),
(512, 3, 1),
"S",
(128, 1, 1),
"U",
(128, 1, 1),
(256, 3, 1),
"S",
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
self.leaky = nn.LeakyReLU(0.1)
self.use_bn_act = bn_act
def forward(self, x):
if self.use_bn_act:
return self.leaky(self.bn(self.conv(x)))
else:
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels, use_residual=True, num_repeats=1):
super().__init__()
self.layers = nn.ModuleList()
for repeat in range(num_repeats):
self.layers += [
nn.Sequential(
CNNBlock(channels, channels // 2, kernel_size=1),
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
)
]
self.use_residual = use_residual
self.num_repeats = num_repeats
def forward(self, x):
for layer in self.layers:
if self.use_residual:
x = x + layer(x)
else:
x = layer(x)
return x
class ScalePrediction(nn.Module):
def __init__(self, in_channels, num_classes):
super().__init__()
self.pred = nn.Sequential(
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
CNNBlock(
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
),
)
self.num_classes = num_classes
def forward(self, x):
return (
self.pred(x)
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
.permute(0, 1, 3, 4, 2)
)
class YOLOv3(LightningModule):
def __init__(self, in_channels=3, num_classes=80):
super().__init__()
self.num_classes = num_classes
self.in_channels = in_channels
self.layers = self._create_conv_layers()
def forward(self, x):
outputs = [] # for each scale
route_connections = []
for layer in self.layers:
if isinstance(layer, ScalePrediction):
outputs.append(layer(x))
continue
x = layer(x)
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
route_connections.append(x)
elif isinstance(layer, nn.Upsample):
x = torch.cat([x, route_connections[-1]], dim=1)
route_connections.pop()
return outputs
def _create_conv_layers(self):
layers = nn.ModuleList()
in_channels = self.in_channels
for module in config_1:
if isinstance(module, tuple):
out_channels, kernel_size, stride = module
layers.append(
CNNBlock(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=1 if kernel_size == 3 else 0,
)
)
in_channels = out_channels
elif isinstance(module, list):
num_repeats = module[1]
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
elif isinstance(module, str):
if module == "S":
layers += [
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
]
in_channels = in_channels // 2
elif module == "U":
layers.append(nn.Upsample(scale_factor=2),)
in_channels = in_channels * 3
return layers
class YoloVersion3(LightningModule):
def __init__(self):
super(YoloVersion3, self).__init__( )
self.save_hyperparameters()
# Set our init args as class attributes
self.learning_rate=config.LEARNING_RATE
#self.config=config
self.num_classes=config.NUM_CLASSES
self.train_csv=config.DATASET + "/train.csv"
self.test_csv=config.DATASET + "/test.csv"
self.loss_fn= YoloLoss()
self.scaler = amp.GradScaler()
#self.train_transform_function= config.train_transforms
#self.in_channels = 3
self.model= YOLOv3(num_classes=config.NUM_CLASSES).to(config.DEVICE)
self.scaled_anchors = (
torch.tensor(config.ANCHORS) * torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)).to(config.DEVICE)
#self.register_buffer("scaled_anchors", self.scaled_anchors)
self.training_step_outputs = []
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
y0, y1, y2 = (
y[0],
y[1],
y[2],
)
out = self(x)
loss = (
self.loss_fn(out[0], y0, self.scaled_anchors[0])
+ self.loss_fn(out[1], y1, self.scaled_anchors[1])
+ self.loss_fn(out[2], y2, self.scaled_anchors[2])
)
self.log("train_loss", loss, on_epoch=True, prog_bar=True, logger=True) # Logging the training loss for visualization
self.training_step_outputs.append(loss)
return loss
def on_train_epoch_end(self):
print(f"\nCurrently epoch {self.current_epoch}")
train_epoch_average = torch.stack(self.training_step_outputs).mean()
self.training_step_outputs.clear()
print(f"Train loss {train_epoch_average}")
print("On Train Eval loader:")
print("On Train loader:")
class_accuracy, no_obj_accuracy, obj_accuracy = check_class_accuracy(self.model, self.train_loader, threshold=config.CONF_THRESHOLD)
self.log("class_accuracy", class_accuracy, on_epoch=True, prog_bar=True, logger=True)
self.log("no_obj_accuracy", no_obj_accuracy, on_epoch=True, prog_bar=True, logger=True)
self.log("obj_accuracy", obj_accuracy, on_epoch=True, prog_bar=True, logger=True)
if (self.current_epoch>0) and ((self.current_epoch+1) % 6 == 0): # for every 10 epochs we are plotting
plot_couple_examples(self.model, self.test_loader, 0.6, 0.5, self.scaled_anchors)
if (self.current_epoch>0) and (self.current_epoch+1 == self.trainer.max_epochs ): #map calculation across last epoch
check_class_accuracy(self.model, self.test_loader, threshold=config.CONF_THRESHOLD)
pred_boxes, true_boxes = get_evaluation_bboxes(
self.test_loader,
self.model,
iou_threshold=config.NMS_IOU_THRESH,
anchors=config.ANCHORS,
threshold=config.CONF_THRESHOLD,
)
mapval = mean_average_precision(
pred_boxes,
true_boxes,
iou_threshold=config.MAP_IOU_THRESH,
box_format="midpoint",
num_classes=config.NUM_CLASSES,
)
print(f"MAP: {mapval.item()}")
self.log("MAP", mapval.item(), on_epoch=True, prog_bar=True, logger=True)
def configure_optimizers(self):
optimizer = optim.Adam(
self.parameters(),
lr=config.LEARNING_RATE,
weight_decay=config.WEIGHT_DECAY,
)
self.trainer.fit_loop.setup_data()
dataloader = self.trainer.train_dataloader
EPOCHS = config.NUM_EPOCHS # 40 % of number of epochs
lr_scheduler = OneCycleLR(
optimizer,
max_lr=1E-3,
steps_per_epoch=len(dataloader),
epochs=EPOCHS,
pct_start=5/EPOCHS,
div_factor=100,
three_phase=False,
final_div_factor=100,
anneal_strategy='linear'
)
scheduler = {"scheduler": lr_scheduler, "interval" : "step"}
return [optimizer]
def setup(self, stage=None):
self.train_loader, self.test_loader, self.train_eval_loader = get_loaders(
train_csv_path=self.train_csv,
test_csv_path=self.test_csv,
)
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.train_eval_loader
def test_dataloader(self):
return self.test_loader
# if __name__ == "__main__":
# model = YoloVersion3()
# checkpoint = ModelCheckpoint(filename='last_epoch', save_last=True)
# lr_rate_monitor = LearningRateMonitor(logging_interval="epoch")
# trainer = pl.Trainer(
# max_epochs=config.NUM_EPOCHS,
# deterministic=True,
# logger=True,
# default_root_dir="/content/drive/MyDrive/sunandini/Checkpoint/",
# callbacks=[lr_rate_monitor],
# enable_model_summary=False,
# log_every_n_steps=1,
# precision="16-mixed"
# )
# print("---- Training Started ---- Sunandini ----")
# trainer.fit(model)
# torch.save(model.state_dict(), 'YOLOv3.pth')
if __name__ == "__main__":
num_classes = 20
IMAGE_SIZE = 416
model = YOLOv3(num_classes=num_classes)
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
out = model(x)
assert model(x)[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
assert model(x)[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
assert model(x)[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
print("Success!")