Spaces:
Runtime error
Runtime error
from base64 import b64encode | |
import numpy | |
import torch | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel | |
from huggingface_hub import notebook_login | |
# For video display: | |
from IPython.display import HTML | |
from matplotlib import pyplot as plt | |
from pathlib import Path | |
from PIL import Image | |
from torch import autocast | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
import os | |
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
#torch_device = "cpu" | |
# Load the autoencoder model which will be used to decode the latents into image space. | |
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
# The UNet model for generating the latents. | |
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") | |
# The noise scheduler | |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
# To the GPU we go! | |
vae = vae.to(torch_device) | |
text_encoder = text_encoder.to(torch_device) | |
unet = unet.to(torch_device); | |
token_emb_layer = text_encoder.text_model.embeddings.token_embedding | |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding | |
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] | |
position_embeddings = pos_emb_layer(position_ids) | |