Spaces:
Runtime error
Runtime error
from io import BytesIO | |
import os | |
import sys | |
import traceback | |
from infer.lib import jit | |
from infer.lib.jit.get_synthesizer import get_synthesizer | |
from time import time as ttime | |
import fairseq | |
import faiss | |
import numpy as np | |
import parselmouth | |
import pyworld | |
import scipy.signal as signal | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchcrepe | |
from torchaudio.transforms import Resample | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from multiprocessing import Manager as M | |
from configs.config import Config | |
# config = Config() | |
mm = M() | |
def printt(strr, *args): | |
if len(args) == 0: | |
print(strr) | |
else: | |
print(strr % args) | |
# config.device=torch.device("cpu")########强制cpu测试 | |
# config.is_half=False########强制cpu测试 | |
class RVC: | |
def __init__( | |
self, | |
key, | |
formant, | |
pth_path, | |
index_path, | |
index_rate, | |
n_cpu, | |
inp_q, | |
opt_q, | |
config: Config, | |
last_rvc=None, | |
) -> None: | |
""" | |
初始化 | |
""" | |
try: | |
if config.dml == True: | |
def forward_dml(ctx, x, scale): | |
ctx.scale = scale | |
res = x.clone().detach() | |
return res | |
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml | |
# global config | |
self.config = config | |
self.inp_q = inp_q | |
self.opt_q = opt_q | |
# device="cpu"########强制cpu测试 | |
self.device = config.device | |
self.f0_up_key = key | |
self.formant_shift = formant | |
self.f0_min = 50 | |
self.f0_max = 1100 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
self.n_cpu = n_cpu | |
self.use_jit = self.config.use_jit | |
self.is_half = config.is_half | |
if index_rate != 0: | |
self.index = faiss.read_index(index_path) | |
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal) | |
printt("Index search enabled") | |
self.pth_path: str = pth_path | |
self.index_path = index_path | |
self.index_rate = index_rate | |
self.cache_pitch: torch.Tensor = torch.zeros( | |
1024, device=self.device, dtype=torch.long | |
) | |
self.cache_pitchf = torch.zeros( | |
1024, device=self.device, dtype=torch.float32 | |
) | |
self.resample_kernel = {} | |
if last_rvc is None: | |
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( | |
["assets/hubert/hubert_base.pt"], | |
suffix="", | |
) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(self.device) | |
if self.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
hubert_model.eval() | |
self.model = hubert_model | |
else: | |
self.model = last_rvc.model | |
self.net_g: nn.Module = None | |
def set_default_model(): | |
self.net_g, cpt = get_synthesizer(self.pth_path, self.device) | |
self.tgt_sr = cpt["config"][-1] | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | |
self.if_f0 = cpt.get("f0", 1) | |
self.version = cpt.get("version", "v1") | |
if self.is_half: | |
self.net_g = self.net_g.half() | |
else: | |
self.net_g = self.net_g.float() | |
def set_jit_model(): | |
jit_pth_path = self.pth_path.rstrip(".pth") | |
jit_pth_path += ".half.jit" if self.is_half else ".jit" | |
reload = False | |
if str(self.device) == "cuda": | |
self.device = torch.device("cuda:0") | |
if os.path.exists(jit_pth_path): | |
cpt = jit.load(jit_pth_path) | |
model_device = cpt["device"] | |
if model_device != str(self.device): | |
reload = True | |
else: | |
reload = True | |
if reload: | |
cpt = jit.synthesizer_jit_export( | |
self.pth_path, | |
"script", | |
None, | |
device=self.device, | |
is_half=self.is_half, | |
) | |
self.tgt_sr = cpt["config"][-1] | |
self.if_f0 = cpt.get("f0", 1) | |
self.version = cpt.get("version", "v1") | |
self.net_g = torch.jit.load( | |
BytesIO(cpt["model"]), map_location=self.device | |
) | |
self.net_g.infer = self.net_g.forward | |
self.net_g.eval().to(self.device) | |
def set_synthesizer(): | |
if self.use_jit and not config.dml: | |
if self.is_half and "cpu" in str(self.device): | |
printt( | |
"Use default Synthesizer model. \ | |
Jit is not supported on the CPU for half floating point" | |
) | |
set_default_model() | |
else: | |
set_jit_model() | |
else: | |
set_default_model() | |
if last_rvc is None or last_rvc.pth_path != self.pth_path: | |
set_synthesizer() | |
else: | |
self.tgt_sr = last_rvc.tgt_sr | |
self.if_f0 = last_rvc.if_f0 | |
self.version = last_rvc.version | |
self.is_half = last_rvc.is_half | |
if last_rvc.use_jit != self.use_jit: | |
set_synthesizer() | |
else: | |
self.net_g = last_rvc.net_g | |
if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"): | |
self.model_rmvpe = last_rvc.model_rmvpe | |
if last_rvc is not None and hasattr(last_rvc, "model_fcpe"): | |
self.device_fcpe = last_rvc.device_fcpe | |
self.model_fcpe = last_rvc.model_fcpe | |
except: | |
printt(traceback.format_exc()) | |
def change_key(self, new_key): | |
self.f0_up_key = new_key | |
def change_formant(self, new_formant): | |
self.formant_shift = new_formant | |
def change_index_rate(self, new_index_rate): | |
if new_index_rate != 0 and self.index_rate == 0: | |
self.index = faiss.read_index(self.index_path) | |
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal) | |
printt("Index search enabled") | |
self.index_rate = new_index_rate | |
def get_f0_post(self, f0): | |
if not torch.is_tensor(f0): | |
f0 = torch.from_numpy(f0) | |
f0 = f0.float().to(self.device).squeeze() | |
f0_mel = 1127 * torch.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / ( | |
self.f0_mel_max - self.f0_mel_min | |
) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > 255] = 255 | |
f0_coarse = torch.round(f0_mel).long() | |
return f0_coarse, f0 | |
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"): | |
n_cpu = int(n_cpu) | |
if method == "crepe": | |
return self.get_f0_crepe(x, f0_up_key) | |
if method == "rmvpe": | |
return self.get_f0_rmvpe(x, f0_up_key) | |
if method == "fcpe": | |
return self.get_f0_fcpe(x, f0_up_key) | |
x = x.cpu().numpy() | |
if method == "pm": | |
p_len = x.shape[0] // 160 + 1 | |
f0_min = 65 | |
l_pad = int(np.ceil(1.5 / f0_min * 16000)) | |
r_pad = l_pad + 1 | |
s = parselmouth.Sound(np.pad(x, (l_pad, r_pad)), 16000).to_pitch_ac( | |
time_step=0.01, | |
voicing_threshold=0.6, | |
pitch_floor=f0_min, | |
pitch_ceiling=1100, | |
) | |
assert np.abs(s.t1 - 1.5 / f0_min) < 0.001 | |
f0 = s.selected_array["frequency"] | |
if len(f0) < p_len: | |
f0 = np.pad(f0, (0, p_len - len(f0))) | |
f0 = f0[:p_len] | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
if n_cpu == 1: | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=16000, | |
f0_ceil=1100, | |
f0_floor=50, | |
frame_period=10, | |
) | |
f0 = signal.medfilt(f0, 3) | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64) | |
length = len(x) | |
part_length = 160 * ((length // 160 - 1) // n_cpu + 1) | |
n_cpu = (length // 160 - 1) // (part_length // 160) + 1 | |
ts = ttime() | |
res_f0 = mm.dict() | |
for idx in range(n_cpu): | |
tail = part_length * (idx + 1) + 320 | |
if idx == 0: | |
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts)) | |
else: | |
self.inp_q.put( | |
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts) | |
) | |
while 1: | |
res_ts = self.opt_q.get() | |
if res_ts == ts: | |
break | |
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])] | |
for idx, f0 in enumerate(f0s): | |
if idx == 0: | |
f0 = f0[:-3] | |
elif idx != n_cpu - 1: | |
f0 = f0[2:-3] | |
else: | |
f0 = f0[2:] | |
f0bak[part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]] = ( | |
f0 | |
) | |
f0bak = signal.medfilt(f0bak, 3) | |
f0bak *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0bak) | |
def get_f0_crepe(self, x, f0_up_key): | |
if "privateuseone" in str( | |
self.device | |
): ###不支持dml,cpu又太慢用不成,拿fcpe顶替 | |
return self.get_f0(x, f0_up_key, 1, "fcpe") | |
# printt("using crepe,device:%s"%self.device) | |
f0, pd = torchcrepe.predict( | |
x.unsqueeze(0).float(), | |
16000, | |
160, | |
self.f0_min, | |
self.f0_max, | |
"full", | |
batch_size=512, | |
# device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用 | |
device=self.device, | |
return_periodicity=True, | |
) | |
pd = torchcrepe.filter.median(pd, 3) | |
f0 = torchcrepe.filter.mean(f0, 3) | |
f0[pd < 0.1] = 0 | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
def get_f0_rmvpe(self, x, f0_up_key): | |
if hasattr(self, "model_rmvpe") == False: | |
from infer.lib.rmvpe import RMVPE | |
printt("Loading rmvpe model") | |
self.model_rmvpe = RMVPE( | |
"assets/rmvpe/rmvpe.pt", | |
is_half=self.is_half, | |
device=self.device, | |
use_jit=self.config.use_jit, | |
) | |
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
def get_f0_fcpe(self, x, f0_up_key): | |
if hasattr(self, "model_fcpe") == False: | |
from torchfcpe import spawn_bundled_infer_model | |
printt("Loading fcpe model") | |
if "privateuseone" in str(self.device): | |
self.device_fcpe = "cpu" | |
else: | |
self.device_fcpe = self.device | |
self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe) | |
f0 = self.model_fcpe.infer( | |
x.to(self.device_fcpe).unsqueeze(0).float(), | |
sr=16000, | |
decoder_mode="local_argmax", | |
threshold=0.006, | |
) | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
def infer( | |
self, | |
input_wav: torch.Tensor, | |
block_frame_16k, | |
skip_head, | |
return_length, | |
f0method, | |
) -> np.ndarray: | |
t1 = ttime() | |
with torch.no_grad(): | |
if self.config.is_half: | |
feats = input_wav.half().view(1, -1) | |
else: | |
feats = input_wav.float().view(1, -1) | |
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) | |
inputs = { | |
"source": feats, | |
"padding_mask": padding_mask, | |
"output_layer": 9 if self.version == "v1" else 12, | |
} | |
logits = self.model.extract_features(**inputs) | |
feats = ( | |
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0] | |
) | |
feats = torch.cat((feats, feats[:, -1:, :]), 1) | |
t2 = ttime() | |
try: | |
if hasattr(self, "index") and self.index_rate != 0: | |
npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32") | |
score, ix = self.index.search(npy, k=8) | |
if (ix >= 0).all(): | |
weight = np.square(1 / score) | |
weight /= weight.sum(axis=1, keepdims=True) | |
npy = np.sum( | |
self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1 | |
) | |
if self.config.is_half: | |
npy = npy.astype("float16") | |
feats[0][skip_head // 2 :] = ( | |
torch.from_numpy(npy).unsqueeze(0).to(self.device) | |
* self.index_rate | |
+ (1 - self.index_rate) * feats[0][skip_head // 2 :] | |
) | |
else: | |
printt( | |
"Invalid index. You MUST use added_xxxx.index but not trained_xxxx.index!" | |
) | |
else: | |
printt("Index search FAILED or disabled") | |
except: | |
traceback.print_exc() | |
printt("Index search FAILED") | |
t3 = ttime() | |
p_len = input_wav.shape[0] // 160 | |
factor = pow(2, self.formant_shift / 12) | |
return_length2 = int(np.ceil(return_length * factor)) | |
if self.if_f0 == 1: | |
f0_extractor_frame = block_frame_16k + 800 | |
if f0method == "rmvpe": | |
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160 | |
pitch, pitchf = self.get_f0( | |
input_wav[-f0_extractor_frame:], self.f0_up_key - self.formant_shift, self.n_cpu, f0method | |
) | |
shift = block_frame_16k // 160 | |
self.cache_pitch[:-shift] = self.cache_pitch[shift:].clone() | |
self.cache_pitchf[:-shift] = self.cache_pitchf[shift:].clone() | |
self.cache_pitch[4 - pitch.shape[0] :] = pitch[3:-1] | |
self.cache_pitchf[4 - pitch.shape[0] :] = pitchf[3:-1] | |
cache_pitch = self.cache_pitch[None, -p_len:] | |
cache_pitchf = self.cache_pitchf[None, -p_len:] * return_length2 / return_length | |
t4 = ttime() | |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) | |
feats = feats[:, :p_len, :] | |
p_len = torch.LongTensor([p_len]).to(self.device) | |
sid = torch.LongTensor([0]).to(self.device) | |
skip_head = torch.LongTensor([skip_head]) | |
return_length2 = torch.LongTensor([return_length2]) | |
return_length = torch.LongTensor([return_length]) | |
with torch.no_grad(): | |
if self.if_f0 == 1: | |
infered_audio, _, _ = self.net_g.infer( | |
feats, | |
p_len, | |
cache_pitch, | |
cache_pitchf, | |
sid, | |
skip_head, | |
return_length, | |
return_length2, | |
) | |
else: | |
infered_audio, _, _ = self.net_g.infer( | |
feats, p_len, sid, skip_head, return_length, return_length2 | |
) | |
infered_audio = infered_audio.squeeze(1).float() | |
upp_res = int(np.floor(factor * self.tgt_sr // 100)) | |
if upp_res != self.tgt_sr // 100: | |
if upp_res not in self.resample_kernel: | |
self.resample_kernel[upp_res] = Resample( | |
orig_freq=upp_res, | |
new_freq=self.tgt_sr // 100, | |
dtype=torch.float32, | |
).to(self.device) | |
infered_audio = self.resample_kernel[upp_res]( | |
infered_audio[:, : return_length * upp_res] | |
) | |
t5 = ttime() | |
printt( | |
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs", | |
t2 - t1, | |
t3 - t2, | |
t4 - t3, | |
t5 - t4, | |
) | |
return infered_audio.squeeze() | |